Теперь поговорим о хромосомных перестройках. Основные типы хромосомных перестроек:
1. дупликация — удвоение сегмента
2. делеция — утрата сегмента,
3. инверсия — переворот сегмента,
4. транслокация — перенос сегмента на другую хромосому Все они являются причинами многих болезней.
Перестройки хромосом в гаметах часто приводят к болезням человека — нарушениям морфологии, физиологии и поведения, особенно часто встречается дупликация и делеция, как правило, все такие болезни сопровождаются заторможенным умственным развитием, то есть чаще всего какие бы ни были хромосомные перестройки, они затрагивают развитие наших умственных способностей, ну а кроме этого болезни сопровождаются чаще всего недоразвитием каких-либо органов (например, маленькая голова).
Основные типы хромосомных перестроек:
1. дупликация — удвоение сегмента
2. делеция — утрата сегмента,
3. инверсия — переворот сегмента,
4. транслокация — перенос сегмента на другую хромосому
В эволюции геномные и хромосомные мутации чаще фиксируются у растений, реже у животных. Геномные мутации у животных обычно различают таксоны более высоких порядков например отряды (сельдевые и лососевые), а у растений это могут быть и виды (пшеница и другие культурные растения). Анеуплоидия и перестройки хромосом в гаметах обычно приводят к болезням у животных человека — нарушениям морфологии, физиологии, поведения, и резко снижают возможность оставить потомство. Тем не менее, сотни тысяч таких случаев зафиксированы на сегодня эволюцией — это почти любая пара родственных видов, различающиеся по структуре кариотипа (набора хромосом). Ясно, что такие изменения когда-то произошли у индивида и затем закрепились в поколениях.
Например, хромосома № 2 человека образована при транслокации, произошедшей у наших предков после ответвления от ствола всех приматов: у орангутанга, гориллы и даже шимпанзе (5 млн. лет расхождения). У всех этих наших родственников по две независимых хромосомы, которые лишь у человека оказались соединенными. Часто, хотя и не всегда, перестройки приводят к понижению жизнеспособности, но в нашем случае получилось не так, мы получили две разных хромосомы шимпанзе, которые соответствуют хромосоме № 2 человека. Это видно при поперечном окрашивании хромосом, которые выявляют идентичные в геноме фрагменты хромосом. Все люди на Земле имеют общего предка, у которого произошла эта транслокация (меньше 5 млн. лет назад)
Число хромосом у млекопитающих может различаться в десятки раз, хотя размер генома отличается менее чем на 20 %. У человека число пар хромосом 23, а у лошади — 66, у обитающего в Азии оленя-мунтжака — 6 хромосом. Исключение составляет южно-американский грызун, называемый красной вискашевой крысой (латинское название Tympanoctomys barrerae, английское — red viscacha rat), хотя крысе оно весьма отдаленный родственник). У этого животного геном не диплоидный, а тетраплоидный, содержит в два раза больше ДНК, чем у остальных млекопитающих, и 102 хромосомы.
Хромосома № 22 человека образована при трансляции, произошедшей у наших предков после ответвления от ствола всех приматов: у оранга, гориллы и даже шимпанзе (5 млн. лет расхождения) две разных хромосомы соответствуют хромосоме 2 человека. Все люди на Земле имеют общего предка, у которого произошла эта транслокация.
Если до общего предка млекопитающих около 200 миллионов лет и около 60 транслокаций (перестроек разных хромосом), то 1 транслокация сохраняется и дает начало новому виду не реже чем раз в 3 млн. лет. А так как недетектируемых внутрихромосомных перестроек больше на 1–2 порядка, то это означает, что носители таких перестроек выживают гораздо чаще, нежели раз в 3 млн. лет. Последний раз такая перестройка в линии человека произошла не более 5 млн. лет назад.
Геномные и хромосомные мутации могут появляться и в соматических клетках человека и животных. В этом случае они не передаются потомству, но часто связаны с развитием рака. Реципрокная транслокация фрагментов между хромосомами 8 и 14 в лимфоцитах человека приводит к лимфоме Бёркита: к гену иммуноглобинов присоединяется ген онкогена c-MYC, меняя его регуляцию.