Качественный анализ хроматограмм основан на идентификации отдельных пиков. Компоненты идентифицируют по времени удерживания, широко используют метод внутреннего стандарта (эталонные растворы), проводят измерения физико-химических свойств компонентов, выходящих из колонки и т. д. Количественный анализ основан на том, что при постоянстве температуры колонки, скорости потока газа и выполнении ряда других условий площадь каждого хроматографического пика или его высота пропорциональны концентрации соответствующего компонента образца.
Тонкослойная хроматография
Тонкослойная хроматография относится к типу так называемой распределительной хроматографии, разделение веществ в которой обусловлено их различными коэффициентами распределения между двумя несмешивающимися жидкими фазами.
Для получения хроматограмм используют специальные готовые пластинки, покрытые тонким слоем сорбента (силикагель, Аl2О3). Первая фаза — органический растворитель; вторая — адсорбированная на поверхности сорбента вода. Вещество наносят в виде раствора на стартовую линию, после чего пластинку подсушивают и помещают в вертикальном положении в камеру, на дно которой налито немного элюента. Из-за действия капиллярных сил растворитель подниматься по пластине, пока не достигнет верхнего края. Необходимо, чтобы пластина находилась в атмосфере, насыщенной парами растворителя, поэтому камеру закрывают крышкой. По окончании движения растворителя хроматограмму вынимают из камеры, высушивают и выявляют пятна разделенных веществ различными методами.
Для получения четких хроматограмм необходимо, чтобы адсорбция разделяемых компонентов на носителе являлась слабой.
Подвижный растворитель подбирают в зависимости от природы разделяемых веществ и носителя. Как правило, для разделения более полярных соединений используют более полярные растворители. Часто применяют смеси растворителей, например гексан-дихлорметан, бензол-этилацетат и т. п.
Основной количественной характеристикой вещества в тонкослойной хроматографии является величина Rf, равная отношению расстояния, пройденного веществом, к расстоянию, пройденному растворителем (рис. 23).
Рисунок 23. Тонкослойная хроматограмма.
Обычно для расчета Rf расстояния измеряют от стартовой линии до центра пятна:
Rf = Ri/Rs
При постоянстве условий эксперимента коэффициент Rf определяется в основном природой вещества, параметрами сорбента и свойствами растворителей.
Для идентификации и количественного определения веществ хроматограмму после разделения, если компоненты не окрашены, обрабатывают специально подобранным реагентом, образующим с разделяемыми веществами окрашенные соединения — компоненты проявляются в виде пятен. Очень часто применяют пластинки, покрытые слоем сорбента, содержащего люминофор. Так как многие органические соединения поглощают в ультрафиолетовой области, то при рассматривании такой пластинки в УФ-свете эти вещества будут проявляться в виде темных пятен на светящемся фоне. Количество вещества в каждом пятне определяют визуально по интенсивности окраски по сравнению с эталоном, по площади пятна, для люминесцирующих веществ по интенсивности люминесценции, методом отражательной спектрофотометрии, измеряя интенсивность света, отраженного окрашенным пятном (денситометрия) и др.
4.7.Определение температуры плавления.
Для контроля за степенью чистоты твердых органических соединений часто используют измерение температуры его плавления. Чистые вещества обычно обладают четко выраженной температурой плавления, примеси обычно понижают эту температуру или увеличивают интервал, в котором плавится данное соединение. Для известных соединений температуры плавления табулированы.
Классическим методом определения температуры плавления является метод с использованием капилляра. Для этого вещество помещают в капилляр диаметром 1 мм, создавая столбик высотой 2–5 мм. Затем капилляр помещают в нагреваемый блок и наблюдают за изменениями, происходящими с веществом. Отмечают температуру, при которой появляется жидкая фаза (начало плавления) и температуру, при которой исчезают последние кристаллы вещества (конец плавления). Отмечают также все изменения, происходящие с веществом, а именно — изменение цвета, разложение, возгонку и т. п. Результаты представляют в виде интервала, например 135–135.5 °C. Измерения повторяют 2–3 раза.