Управляемое сопротивление для переменного тока.
Схема (рис. 2.18) позволяет получить изменение проводимости транзисторов на 100 дБ, при этом ток в управляющей цепи меняется от 0 до 1 мА. Управляющее напряжение включается таким образом, чтобы открыть транзисторы. Сопротивление n-р перехода при малых смещениях меняется в широких пределах. Входной сигнал проходит через четыре n-р перехода.
Для германиевых транзисторов управляющий ток должен лежать в диапазоне от 10 мкА до 10 мА. Сопротивление меняется по формуле R = 1,1/h21э∙I, где h21э — коэффициент передачи транзистора. У кремниевых транзисторов управляющий ток равен от 1 мкА до 1 мА, а сопротивление меняется по формуле R = 2,5/h21э∙I. Входное сопротивление при Iу = 0 для германиевых транзисторов составляет 4,7 кОм, для кремниевых транзисторов — 2,3 кОм. При входном сигнале 50 мВ нелинейные искажения составляют менее 3,5 %. В схеме транзисторы VT1 и VT2 можно заменить интегральной микросхемой К10КТ1, а транзисторы VT3 и VT4 — интегральной микросхемой К124КТ1 (К162КТ1).
4. ЭКВИВАЛЕНТЫ КОНДЕНСАТОРОВ
Уменьшение емкости постоянного конденсатора.
Включение конденсатора в цепь ОС активного элемента позволяет управлять эквивалентной емкостью с помощью резистора. Эквивалентная емкость конденсатора в схеме на рис. 2.19 зависит от потенциала, до которого он может зарядится при действии входного сигнала. При изменении напряжения, поступающего на вторую обкладку конденсатора, появляется возможность менять эквивалентную емкость. Если на базы транзисторов VT2 и VT4 с резистора R подается половина напряжения, то эквивалентная емкость будет в два раза меньше емкости конденсатора. Подобным способом можно изменять емкость в 1000 раз. Для уменьшения габаритов устройства транзисторы VT1 и VT2 можно заменить интегральной микросхемой К101КТ1, а транзисторы VT3 и VT4 — К124КТ1 (К162КТ1).
Увеличение емкости постоянного конденсатора.
Подключением конденсатора в цепь ООС усилителя можно изменить эквивалентную емкость конденсатора Сэкв =С∙(1 — К). Усилитель должен менять коэффициент усиления с переворотом фазы сигнала. Коэффициент усиления можно регулировать с помощью резистора R2 (рис. 2.20). Большое входное сопротивление усилителя сводит к минимуму токи утечки электронного конденсатора.
Переменный конденсатор на ОУ.
Конденсатор постоянной емкости (на схеме рис. 2.21,а) превращается в переменный за счет изменения коэффициента усиления ОУ. Эквивалентная емкость его равна Сэкв = С∙(1 + R2/R1), где R1 и R2 — части потенциометра R. Таким образом, эквивалентная емкость зависит от угла поворота движка потенциометра. Грубое и плавное изменение коэффициента передачи, а следовательно и эквивалентной емкости возможно во второй схеме на рис. 2.21,б. Здесь Сэкв = C∙[1 + R2/R1 + R3/R4 +R2R3/R1R4].
5. ЭКВИВАЛЕНТЫ ДИОДОВ И ТРАНЗИСТОРОВ
Идеальный диод.
Полупроводниковые диоды не пригодны для выпрямления малых сигналов. Это обусловлено тем, что для появления проводимости кремниевым диодам требуется напряжение прямого смещения около 0,7 В, а германиевым — около 0,3 В. Если диод включить на выходе ОУ, то пороговые напряжения диодов будут уменьшены в Ку.и раз, где Ку.и — коэффициент усиления интегральной микросхемы. В результате этого диод начинает проводить при входных сигналах в несколько милливольт.
Первая схема на рис. 2.22 имеет коэффициент усиления, равный единице. Во второй схеме коэффициент усиления можно менять при изменении сопротивлений резисторов Ку.и = 1 + R2/R1.