M{Δ2доп} = a2[μ2xμ2ε + σ2xσ2ε(1 + 2p2xε) + μ2xσ2ε + μ2εσ2x + 4μxμεσxσεpxε]. (6)
где pxε — коэффициент корреляции между измеряемой и влияющей величинами.
Здесь и в дальнейшем под обозначением με, будем понимать смещение математического ожидания влияющей величины относительно значения μ0, которое принято при градуировке измерительного преобразователя.
В том случае, когда в сигналах входной и влияющей величин присутствуют гармонические составляющие, определяемые соответственно как:
xh(t) = Cxsin(ωxt),
εh(t) = Cεsin(ωεt).
где Cx и Cε — амплитуды гармонических составляющих соответственно входного и влияющего воздействий; ωx и ωε — их частоты.
Выражение для расчета квадрата мультипликативной дополнительной погрешности с учетом гармонических составляющих коррелированных сигналов измеряемой и влияющей величин имеет вид [5]:
В том случае, когда гармонические составляющие случайных процессов xh(t) и εh(t) коррелированы, т. е. ωx = ωε, выражение (7) усложняется:
где ф — сдвиг фаз между гармоническими составляющими.
При воздействии на измерительный преобразователь n статистически независимых влияющих величин (рис. 1), не коррелированных с входным воздействием, выражение для расчета квадрата мультипликативной дополнительной погрешности имеет вид
где ai — коэффициент влияния i-той влияющей величины.
Рис. 1. Структура модели возникновения дополнительной погрешности при наличии множества влияющих воздействий.
При воздействии на ИП n статистически зависимых влияющих величин, которые коррелированы с входным воздействием, выражение (9) существенно усложняется и принимает вид:
Во всех предыдущих расчетах предполагалось, что тракты прохождения измеряемой и влияющей величин являются безинерционными, или, искажениями формы сигналов за счет инерционности можно пренебречь. В том случае, когда в каналах присутствует инерционность (рис. 2), расчет математического ожидания квадрата мультипликативной дополнительной погрешности осуществляется по иной схеме.
Рис. 2. Структура модели образования динамической и мультипликативной дополнительной погрешностей при учете динамических свойств каналов сигналов входного и влияющего воздействий
При наличии в измерительном канале инерционности в результат измерения помимо дополнительной погрешности вносится еще и динамическая погрешность. Существующие методы расчета позволяют вычислить отдельно каждую составляющую, а затем, произвести геометрическое суммирование. При этом, как правило, предполагается, что эти составляющие статистически независимы. В действительности, это допущение не совсем корректно, т. к. не учитывает наличие корреляционной связи между составляющими суммарной погрешности, возникающей при прохождении измерительного сигнала и сигнала влияющей величины через тракт ИП.
Суммарная погрешность ИП, будет определяться из соотношения:
Δ(t) = x(t) — y1(t) = x(t) — [a∙y(t)e(t) + y(t)].
Определим квадрат суммарной погрешности:
Δ2(t) = [x(t) — y(t) — ay(t)e(t)]2 = [x(t) — y(t)]2 + a2y2(t)e2(t) — 2ay(t)[x(t) — y(t)].
В выражении (11) присутствуют 3 составляющие. Первая определяет квадрат динамической погрешности Δ2дин; вторая — квадрат дополнительной погрешности Δ2доп; третья — член, обусловлен наличием корреляционной связи между дополнительной и динамической погрешностями.