Но, понятно, один такой датчик, сам по себе, для этой цели не слишком удобен: надо все время смотреть на микроамперметр и ждать, пока отклонится его стрелка. Однако к датчику можно приспособить систему сигнализации — звонок или электрическую лампу. Как это сделать — придумайте сами или посоветуйтесь с учителем физики.
Между прочим, такой хемотронный «сторож» удается использовать для охраны важных объектов, например банков. Конечно, в этом случае датчик отнюдь не гостеприимен — он предупреждает об опасности.
Вот и все. Последняя страница дочитана, последний опыт поставлен.
Но, собственно, почему последний? Мы вовсе не рассчитывали дать вам исчерпывающее руководстве по доступным химическим экспериментам, и очень многое осталось за пределами этой книги. Существует так много химических опытов, что вряд ли их можно собрать в одной книге, даже гораздо большей, чем эта. И вы, несомненно, сумеете найти описания этих опытов в журналах, в популярных книгах, в учебниках, в пособиях по лабораторным работам. Конечно, если вам понравилось ставить химические эксперименты, на что мы от души надеемся.
А еще вы можете придумывать опыты самостоятельно. В начале книги мы вас от этого отговаривали, но тогда у вас не было навыков и практики; теперь же вы освоили многие технические приемы и познакомились с безопасными способами работы. Все предупреждения — о бесцельном сливании реактивов, о чрезмерно больших количествах реагирующих веществ и о прочих ошибках начинающих химиков — остаются в силе. И самое главное: надо четко представлять себе, как идет реакция, что и при каких условиях получается в результате. Для этого прежде всего надо познакомиться с теорией. По школьному ли учебнику, по более серьезному руководству, по журнальной статье. А еще лучше посоветоваться со знающим человеком — с учителем химии, с руководителем химического кружка, И только потом аккуратно и не торопясь ставить опыт.
Будем считать, что вся эта книга — не сборник наставлений для начинающих химиков, а предисловие к будущей самостоятельной работе. И если эти опыты хоть в какой-то мере помогут вам утвердиться в решении посвятить себя химии, то, значит, все, кто готовил эту книгу, старались не зря,
МЫШЛЕНИЕ
Тангенциальная индукция и законы электромагнетизма
Г. Ивченков
1. Введение
Современное положение в теории электромагнетизма не может считаться удовлетворительным. Фундаментальные исследования в этой области прекратились более ста лет назад, когда теоретики электромагнетизма посчитали, что все законы открыты и все явления объяснены, а практики нашли, что этих законов вполне достаточно, чтобы создать работающие машины. Однако, за время интенсивного практического применения электромагнетизма накопилось большое количество парадоксальных явлений, необъяснимых с точки зрения современной науки и, даже, появились работающие электрические машины, которые, опять же, согласно современной науке, не могут работать, такие как «униполярный генератор» [1, 2], мотор Маринова [3, 4] и т. п. Кроме того, ряд очевидных электромагнитных природных явлений, таких как шаровая молния и электрофонные метеориты (метеориты, создающие очень сильные электромагнитные поля) не находят вразумительного объяснения и, соответственно, не могут быть воспроизведены в лаборатории. В частности, непонимание механизма шаровой молнии (являющейся чисто МГД образованием), свидетельствует о неполноте современных знаний об электромагнетизме, что, например, привело к 50-летнему застою в создании магнитных ловушек для термоядерной плазмы. Только благодаря огромному количеству экспериментов (50-летняя эдиссоновщина) удалось продлить время удержания плазмы до порядка 2 секунд (сравните с минутами у шаровой молнии). На эти работы были потрачены миллиарды долларов — такова плата за невежество физиков-теоретиков. Далее, в учебниках и справочниках (в частности [5, 6, 7]) вы очень часто не найдете ответа на конкретные практические задачи, такие, например, как экранирование магнитного поля, особенно, постоянного и движущегося [11]. Даже в элементарных вещах, преподаваемых в школе, царит неразбериха — очень часто путают фарадеев и лоренцев механизмы наведения ЭДС и создания электродвижущей силы. Например, закон Ампера (правило левой руки), вообще-то являющийся следствием проявления лоренцевой силы, «по умолчанию» считается следствием фарадеева механизма [6]. Если вы проведете ревизию формул и положений, записанных в учебниках и справочниках, то выявится масса несуразностей, завуалированных в университетских учебниках тяжело проходимым лесом математического формализма, что и было отмечено в ряде статей, например [9, 10]. Дело усугубляется сведением всей природы магнитного поля к круговым токам и вовлечением в электромагнетизм теории относительности (СТО и ОТО). Некоторые авторы считают электромагнетизм прямым следствием теории относительности Эйнштейна (и это при скоростях дрейфа электронов в сантиметры в секунду и отсутствии искажения пространства-времени даже в самых сильных магнитных полях!). Наиболее ярко этот подход отражен в «Берклеевском курсе физики», (том II, Э. Парселл, Электричество и магнетизм) [7]. Прочтение этой книги вызывает чувство раздражения и неуважения к автору данного учебника.
У автора данной статьи, по началу, не было никакого желания проводить эксперименты по проверке и уточнению фундаментальных законов электромагнетизма. Такая необходимость появилась в процессе проведения исследований по вполне конкретной практической задаче — экранированию движущегося магнитного поля. После выяснения полной несостоятельности положений, описанных в доступных учебниках и справочниках (например, в [5, 6, 7, 11]), пришлось провести ряд экспериментов, связанных с изучения этого явления, моделируя движение магнитного поля движением постоянного магнита. Несоответствие полученных результатов общепринятым законам электромагнетизма привело к необходимости проведения других экспериментов, связанных с уточнением некоторых фундаментальных положений теории электромагнетизма. Эти эксперименты привели к некоторым нетривиальным выводам, позволили уточнить принципы наведения фарадеевой ЭДС для случая движущегося носителя магнитного поля, уточнить принцип Ленца и открыть механизм тангенциальной индукции, что, в свою очередь, позволило предложить ряд электрических машин, использующих этот принцип. Прототипы этих машин были созданы и испытаны автором.
2. Схема эксперимента
На Рис. 1 приведен пример схемы измерения ЭДС, индуцированной в униполярном генераторе. Аналогичные схемы применялись для измерения ЭДС, вырабатываемой другими электрогенераторами, исследованными автором (схемы приведены в соответствующих разделах).
Рис. 1
Во всех ниже перечисленных экспериментах (кроме измерений крутящих моментов) ротор, содержащий однородный или составной постоянный магнит был закреплен в шпинделе малогабаритного сверлильного станка (1), а для магнитной экранировки нижнего проводника (используемой в некоторых экспериментах) применялась стальная плита (4) с центральным отверстием (столик станка). Относительно небольшая скорость вращения шпинделя в 1000 об/мин (станок обеспечивает скорость вращения до 2500 об/мин) была выбрана для избежания биений магнита (2), что особенно важно в случае составного магнита. Для экспериментов были выбраны ферритовые дисковые (кольцевые) магниты 70x30x10 мм с Вr = 0.274 Тл, а также NdFeB магниты 65x20x10 мм с Вг = 1.2 Тл (две первые цифры — наружный и внутренний диаметры, последняя — толщина). Все электроды и щетки (3) были выполнены из немагнитного никелевого сплава. Для материала дисков был выбран фольгированный стеклотекстолит. Форма и амплитуда сигнала измерялась 2-х лучевым осциллографом "Hitachi V-212" (5). Точность измерения — порядка 0.5 мВ. Кабель, соединяющий измеряемый контур с осциллографом был зашунтирован сопротивлением в 27 Ом для уменьшения индустриальных наводок (внутреннее сопротивление униполярного генератора крайне мало, поэтому шунтирующее сопротивление никак не сказывается на точности измерений).