Выбрать главу

Рассмотрим несколько типичных случаев электролиза водных растворов.

Электролиз раствора СuСl2 с инертным анодом. Медь в ряду напряжений расположена после водорода; поэтому у катода будет происходить разряд ионов Сu2+ и выделение металлической меди. У анода будут разряжаться хлорид-ионы.

Схема электролиза раствора хлорида меди (II):

Электролиз раствора K2SO4 с инертным анодом. Поскольку калий в ряду напряжений стоит значительно раньше водорода, то у катода будет происходить выделение водорода и накопление ОН-. У анода будет идти выделение кислорода и накопление ионов Н+. В то же время в катодное пространство будут приходить ионы К+, а в анодное — ионы SO42-. Таким образом, раствор во всех его частях будет оставаться электронейтральным. Однако в катодном пространстве будет накапливаться щелочь, а в анодном — кислота.

Схема электролиза раствора сульфата калия:

Электролиз раствора NiSO4 с никелевым анодом. Стандартный потенциал никеля (-0,250 В) несколько больше, чем -0,41 В; поэтому при электролизе нейтрального раствора NiS04 на катоде в основном происходит разряд ионов Ni2+ и выделение металла. На аноде происходит противоположный процесс — окисление металла, так как потенциал никеля намного меньше потенциала окисления воды, а тем более, потенциала окисления иона SO42-. Таким образом, в данном случае электролиз сводится к растворению металла анода и выделению его на катоде.

Схема электролиза раствора сульфата никеля:

Этот процесс применяется для электрохимической очистки никеля.

Законы Фарадея

1. Закон Фарадея.

Масса вещества, выделившегося на электроде при прохождении по раствору электролита электрического тока, прямо пропорциональна количеству электричества.

Δm = kэQ

где Δm — количество прореагировавшего вещества; Q — количество электричества; kэ — коэффициент пропорциональности, показывающий, сколько вещества прореагировало при прохождении единицы количества электричества. Величина, k называется электрохимическим эквивалентом.

k = М/(NAz|е|)

где z — валентность иона; М — молярная масса вещества, выделившегося на электроде; NA—постоянная Авогадро. |е| = 1,6∙10-19Кл.

2. Закон Фарадея.

Согласно второму закону Фарадея, при определённом количестве прошедшего электричества отношения масс прореагировавших веществ равно отношению их химических эквивалентов:

Δm1/A1 = Δm2/A2 = Δm3/A3 = const

Химический эквивалент элемента, равен отношению части массы элемента, которая присоединяет или замещает в химических соединениях одну атомную массу водорода или половину атомной массы кислорода, к 1/12 массы атома С12. Понятие "химический эквивалент" применимо и к соединениям. Так, химический эквивалент кислоты, численно равен ее молярной массе, деленной на основность (число ионов водорода). Химический эквивалент основания — его молярная массе, деленной на кислотность (у неорганического основания — на число гидроксильных групп). Химический эквивалент соли — ее молярной массе, деленной на сумму зарядов катионов или анионов.

Факторы от которых зависит электролиз

Эффективность электролиза оценивают рядом факторов, к которым относятся: сила тока, напряжение, плотность тока, КПД источника тока, выход по току, выход по веществу, коэффициент полезного действия электроэнергии (выход по энергии), расход электроэнергии на единицу полученного продукта.

Сила тока или нагрузка на электролизёр характеризуют его производительность. Чем выше сила тока, пропускаемого через электролизёр, тем больше продукта можно получить при эксплуатации данного электролизёра. Наблюдается тенденция к созданию мощных электролизёров, рассчитанных в некоторых случаях на десятки и сотни тысяч Ампер (производство хлора, алюминия и т. д.) напряжение на электролизёре складывается из нескольких составляющих:

U = еа-еk + Δеа + Δеk + еэл.- едиафр. + еконт.

где: U — общее напряжение на ячейке; еа и еk — равновесные потенциалы анодной и катодной реакции; еэл и едиафр. падение напряжения в электролите и в диафрагме; еконт. — падение напряжения в контактах. Сумма еа-еk называется напряжением разложения. Эта величина соответствует расходу на электролиз электроэнергии, которая идёт непосредственно на изменение внутренней энергии веществ.

При электролизе стремятся к уменьшению напряжения на ячейке за счёт величины поляризации и омического состояния баланса напряжения, то есть слагаемых, обусловленных необратимостью процесса. Напряжение разложения обусловлено природой реагирующего вещества, а поэтому не может быть изменено. Значения Δеk и Δеа могут быть изменены в зависимости от характера электрохимической реакции, протекающей на электроде, путём перемешивания, повышения температуры электролита, изменения состояния поверхности электрода и за счёт ряда других факторов.

Падение напряжения в электролите, выражаемое уравнением R = pl/s, где р — удельное сопротивление электролита, Ом∙см, l — расстояние между электродами, см (без учета диафрагмы), S — площадь поперечного сечения электролита, через которую проходит электрический ток см2, может быть уменьшено, как следует из приведённого выражения, сближением электродов, введением в раствор более электроотрицательных добавок, а также повышением температуры. Если электролиз сопровождается образованием газов, то приведённое выше выражение не всегда точно соответствует падению напряжения в электролите. Это объясняется тем, что выделяющиеся на электродах пузырьки газов уменьшают активное сечение электролита S и удлиняют путь тока от одного электрода к другому. Это явление называется газонаполнением, которое может быть определено как отношение объёма занимаемого в данный момент пузырьком воздуха к общему объёму электролитической ячейки. Влияние газонаполнения на электропроводность электролита может быть учтено с помощью следующего выражения:

р/р0 = 1–1.78φ + φ2

где р и ро — соответственно удельные сопротивления сплошного и газонаполненного электролита, φ — газонаполнение. Величина φ может быть уменьшена повышением температуры, а также особым устройством электродов, обеспечивающих свободное удалением газов из ячейки.

Падение напряжения в диафрагме было оценено при решении вопроса о роли диафрагмы в электролизе. Что касается падения напряжения в контактах, то эта величина зависит от совершенства контактов, чистоты контактирующих поверхностей. Существует довольно много конструктивных решений электродных контактов.