Как правило, за цикл наблюдаются два экстремума отклонений от тренда — один максимум и один минимум. Следовательно, за период, состоящий из N уровней, насчитывается экстремумов:
K = 2∙(N/l) (6.2)
где l — длина цикла.
Причиной циклической колеблемости является какая-либо основная сила, влияющая на уровень изучаемого явления. Иначе говоря, есть главный фактор, вызывающий колебания. Сезонные колебания температуры, осадков, а следовательно, и производства, и потребления многих видов продукции зависят от одного фактора — наклона земной оси к плоскости орбиты Земли. Причина циклической колеблемости солнечной активности пока науке не известна.
Распознать циклическую долгопериодическую колеблемость можно по виду графика, подсчетом числа экстремумов в ряду отклонений от тренда и по коэффициенту автокорреляции отклонений I порядка. Если число локальных экстремумов в ряду отклонений мало, то можно предположить наличие циклической колеблемости. Поскольку отклонения одного и того же знака следуют подряд, их произведения являются положительными числами, а отрицательные произведения встречаются лишь дважды за цикл — при пересечении графиком фактического ряда уровней тренда вниз и вверх. Следовательно, коэффициент автокорреляции при долгопериодической колеблемости — величина положительная, стремящаяся к +1 при l —> оо. При наличии фактического коэффициента больше чем +0,3 можно считать, что в общей колеблемости временного ряда есть существенная циклическая составляющая, а при ιalU > 0,7–0,6 циклическая составляющая является главной.
Для нахождения длины цикла, особенно если цикличность не строгая, а «квази», нужно последовательно вычислить коэффициенты автокорреляции отклонений от тренда разных порядков, т. е. с лагом 1, 2, 3 и т. д. периодов времени. Наибольший по абсолютной величине коэффициент автокорреляции отметит длину цикла.
6.1.3. Случайно распределенная во времени колеблемость
Характерной чертой данного типа колебаний является хаотичность последовательности отклонений: после отрицательного отклонения от тренда может следовать снова отрицательное или даже два-три отрицательных отклонений, а может и положительное (два-три). Это как бы мелкие «куски» пилообразной и циклической колеблемости разных длин цикла, перемешанные друг с другом. Иногда случайно распределенную колеблемость и называют «интерференция колебаний» (термин, заимствованный из физики).
Рис. 6.3. Случайно распределенная во времени колеблемость
_._ фактические уровни
___ тренд
Для колеблемости, изображенной на рис. 6.3, характерны два свойства:
• из-за хаотического чередования знаков отклонений от тренда их взаимопогашение наступает только на достаточно длительном периоде, а на коротких отрезках отклонения могут аккумулироваться, например, могут быть три неурожайных года подряд или два-три высокоурожайных. Значит, необходимы довольно значительные резервы, страховые запасы для гарантии от колебаний;
• случайно распределенная во времени колеблемость неблагоприятна для прогнозирования, ибо в любом прогнозируемом периоде может осуществиться с равной вероятностью как положительное, так и отрицательное отклонение от тренда. (Как увидим в гл. 10. прогнозировать можно лишь интервал, в котором с заданной вероятностью может оказаться уровень.)
Причиной случайно распределенных колебаний служит наличие большого комплекса независимых или слабосвязанных между собой факторов, влияющих на уровни изучаемого явления. Так, колебания урожайности зависят от осадков в разные периоды роста культур, от температуры воздуха и почвы, от силы ветра, от развития вредных насекомых, болезнетворных микроорганизмов, от соблюдения агротехники, от качества семян и еще от многих других факторов. Практика статистических исследований колеблемости урожаев показала, что преобладают именно случайно распределенные колебания. Наличие множества примерно равноправных и независимых факторов означает также, что нельзя существенно уменьшить колеблемость, воздействуя только на какой-либо отдельный фактор. Необходимо, если это возможно, регулировать все основные факторы, как, например, и делается в защищенном грунте (теплицах).
Распознать случайно распределенную во времени колеблемость по виду графика труднее, чем два других типа колебаний. Число локальных экстремумов может также колебаться. В среднем, как доказал английский статистик М. Кендэл [10], их число составляет 2/3 (n — 2) при среднем квадратическом отклонении, равном