Выбрать главу

√[(16n — 29)/90]

Ряд, изображенный на рис. 6.3, имеет 10 локальных экстремумов (точек перегиба ломаной линии) при 2/3(15 — 2) = 8,7 и среднем квадратичном отклонении, равном

√[(16∙15–29)/90] = 1,53

Как видим, фактическое число экстремумов попадает в интервал х¯± σ, т. е. вероятность того, что распределение отклонений от тренда является случайным, довольно велика, следовательно, эта гипотеза не может быть отклонена.

Коэффициент автокорреляции отклонений от тренда при случайно распределенной колеблемости стремится к нулю при n —> оо. Если ряд состоит менее чем из 19–22 уровней, коэффициенты автокорреляции I порядка, не превышающие 0,3 по абсолютной величине, свидетельствуют о преобладании случайной компоненты в общем комплексе колебаний. В случае, изображенном на рис. 6.3, ra1U = -0,025.

6.2. Измерение показателей силы и интенсивности колебаний

Показатели силы и интенсивности колебаний аналогичны по построению, по форме показателям силы и интенсивности вариации признака в пространственной совокупности. По существу они отличаются тем, что показатели вариации вычисляются на основе отклонений от постоянной средней величины, а показатели, характеризующие колеблемость уровней временного ряда, — по отклонениям отдельных уровней от тренда, который можно считать «подвижной средней величиной».

6.2.1. Показатели абсолютной величины (силы) колебаний

Первый показатель — амплитуда (размах) колебаний — разность между наибольшим и наименьшим по абсолютной величине отклонениями от тренда. Например, размах колебаний объема экспорта из Японии за 1988–1995 гг. (см. табл. 5.4) составил: 5 — (-4) =9 млрд. дол. Размах колебаний затрат условного топлива на 1 кВт-ч электроэнергии (см. табл. 5.5) составил: 14 — (-8) = 22 г топлива на 1 кВт-ч.

Размах колебаний урожайности зерновых культур во Франции (см. приложение 1) составил 6,6 — (—7,4) = 14 ц/га. Показатель амплитуды колебаний характеризует лишь крайние пределы, но не среднюю силу колеблемости. Чем длиннее ряд, тем больше вероятность того, что в нем встретится особенно большое отклонение от тренда. Поэтому с увеличением длины изучаемого периода возрастает в среднем и амплитуда колебаний в отличие от всех других показателей колеблемости, которые не зависят от длины ряда.

Вторым показателем колеблемости по абсолютной величине (силе) является среднее по модулю отклонение от тренда, которое мы обозначим как a (t):

Знак t отличает указанный и все последующие показатели от аналогичного среднего по модулю отклонения от постоянной средней величины, меры силы вариации в пространственной совокупности. Средний модуль отклонений измеряется в тех же единицах, что уровни ряда. Например, согласно данным табл. 5.6 среднее по модулю отклонение от тренда численности населения Земли в 1950–2000 гг. может составить примерно 43,3 млн чел. Средний модуль отклонений урожайности зерновых культур от тренда во Франции по данным приложения 1 составил 2,68 ц/га.

Хотя средний модуль отклонений тренда вполне пригоден как обобщающий показатель силы колебаний за изучаемый период, но, как известно, модули имеют и существенные недостатки, в частности, с ними невозможно связать вероятностные законы распределения. Поэтому модули не пригодны для прогнозирования доверительных границ возможных колебаний с заданной вероятностью (см. гл. 10).

Чаще всего в качестве третьего показателя силы колебаний используется среднее квадратическое отклонение уровней ряда от тренда, обозначаемое как σ(t) или S(t).

Если речь идет только об измерении колеблемости во временном ряду и не ставится задача оценки силы колебаний вообще в прогнозе на будущее, тогда следует вычислять и использовать обычное среднее квадратическое отклонение:

Если же речь идет о вычислении оценки генерального показателя колеблемости, а исходный временной ряд рассматривается как выборка из генерального ряда, продолжаемого и в прошлое и в будущее, то следует учитывать потерю степеней свободы колеблемости и применять показатель:

где р — число параметров в уравнении тренда.