что после деления каждого из у слагаемых на вторую скобку дает
Σkj=1Cj.
т. е. квадратический параметр параболы по совокупности в целом равен сумме квадратических параметров по всем единицам совокупности. Свободный член параболического тренда по совокупности А вычисляем после нахождения С по формуле
Таким образом, свободный член параболы по совокупности в целом равен сумме свободных членов уравнений трендов по всем единицам совокупности. Доказана и теорема сложения для параболических трендов. Разумеется, если по части единиц совокупности тренды линейные, а по другим единицам — параболические, то и в этом случае соблюдается правило суммирования трендов. Прямую можно считать частным случаем параболы при пулевом ускорении.
В случае экспоненциальных трендов по каждой единице совокупности тренд по совокупности в целом также является экспонентой, коэффициент роста которой к является не постоянной, а переменной величиной, в каждом периоде равной средней арифметической взвешенной из индивидуальных темпов к у по величине уровней предыдущего периода. С течением времени общий темп роста по совокупности асимптотически приближается к величине темпа роста, являющегося наибольшим из всех индивидуальных темпов, так как уровень признака у единицы совокупности с наибольшим темпом роста со временем становится преобладающим в совокупности, его доля стремится к единице. Разумеется, теорема сложения трендов к экспонентам неприменима. Она заменяется теоремой усреднения трендов, которую здесь излагать не будем.
9.2.2. Тренды качественных признаков
Более сложная проблема — агрегирование трендов качественных признаков, таких, как урожайность, производительность труда, коэффициент рентабельности и т. д. Очевидно, что величина каждого уровня качественного признака по совокупности в целом есть средняя взвешенная арифметическая величина, из значений данного признака по единицам совокупности; весами являются значения объемного признака — знаменателя изучаемого качественного показателя; для урожайности — это площадь посева.
Кратко изложим результат исследования, начиная с простейшего случая: при постоянстве весов, т. е. постоянном распределении площади (весового признака) между единицами совокупности, параметры тренда урожайности по совокупности в целом (для всех парабол, включая прямую линию) есть средние взвешенные на доли единиц совокупности в общей площади параметры из всех трендов по каждой единице:
А = a‾; В = Ь‾. Таким образом, тренд урожайности по совокупности хозяйств есть средняя величина, состоящая из трендов по отдельным хозяйствам. При малой колеблемости долей хозяйств в общей площади культуры по совокупности тренд урожайности в совокупности будет приблизительно равен среднему взвешенному тренду отдельных хозяйств. При существенных изменениях в распределении площадей между хозяйствами с разными трендами общий тренд урожайности по совокупности уже не будет равен среднему из трендов по хозяйствам.
Если бы число единиц совокупности было достаточно большим, а изменения их долей в общем объеме признака-веса были случайными, не связанными или слабо связанными с уровнями урожайности и со скоростями ее изменения в отдельных хозяйствах, то, в силу закона больших чисел, параметры тренда урожайности по совокупности в целом в вероятностном смысле приближались бы к их математическому ожиданию, т. е. к среднему из всех индивидуальных трендов. Насколько реальное изменение площадей в совокупности хозяйств отвечает этим условиям, необходимо конкретно исследовать в каждой отдельной задаче.
9.2.3. Агрегирование показателей колеблемости
Ранее доказано, что каждый фактический уровень объемного признака Xi по совокупности в целом равен сумме уровней этого признака для всех единиц совокупности:
Xi = Σkj=1xji.
Точно так же каждый уровень тренда X^i по совокупности есть сумма уровней трендов по единицам совокупности:
X^i = Σkj=1x^ji.
Тогда и каждое отклонение от тренда по совокупности в целом:
Ui = Xi — X^i = Σkj=1xji — x^ji = Σkj=1uij