Средние: х‾ =119,92 ~= 120; у‾ = 19,0.
Уравнения трендов:
урожайности: х^ = 119,9 + 3,81t;
себестоимости: у^ = 19,0 + 1,22t, где t = 0 в 1983 г.
Если рассчитывать коэффициент корреляции между уровнями рядов по обычной формуле
то получаем величину -0,055, незначимо отличную от нуля. Параллельность трендов урожайности и себестоимости погасила обратную связь их колебаний, что привело к результату, противоречащему законам экономики.
Рассмотрим теперь другую методику: измерение корреляции между отклонениями уровней от трендов. Подставляя отклонения от трендов в обычную формулу коэффициента корреляции, имеем:
Однако так как средние величины отклонений от линейных и параболических трендов всегда равны нулю, а от других форм тренда близки к нулю, если эти формы трендов правильно выбраны, то
U‾x = U‾y = 0
и формула приобретает вид:
Соответственно формула коэффициента регрессии также меняется:
Свободный член уравнения регрессии определяем по обычной формуле: а = у‾ — Ьх‾, т. е. для отклонений от трендов: а = U‾y — bU‾x = 0
Уравнение регрессии имеет вид:
UYi = bUXi (9.10)
Подставляя данные из табл. 9.3, получаем:
rUxUy = -952,7/√(7678∙133,3) = -0,9414; r2 = 88%
Таким образом, колебания себестоимости картофеля в совхозе почти целиком были связаны с колебаниями урожайности, связь обратная, как и требуют законы экономики. И вся она была подавлена тем, что оба тренда имели одно и то же направление по совершенно разным причинам: прогресс агротехники — не причина инфляции и роста цен. Равно как и наоборот: инфляция скорее тормозила прогресс урожайности.
Коэффициент регрессии:
b = -952,7/7678 = -0,124
уравнение регрессии: UYi = -0,124∙UXi. Смысл этого уравнения таков: в среднем отклонение себестоимости от ее тренда в i-м году составляет 0,124 величины отклонения урожайности от своего тренда с обратным знаком. Значения себестоимости, рассчитанные по модели с учетом тренда себестоимости и колебаний урожайности, приведены в последней графе табл. 9.3:
y^(x)i = (19,0 + 1,22ti) + (-0,124UXi).
Как видим, полученные по этой модели уровни себестоимости довольно близки к фактическим.
Другим методом измерения корреляции между временными рядами служит метод корреляции цепных показателей динамики, которые являются константами трендов. Для линейных трендов — это абсолютные цепные изменения. Метод предпочтительно применять для таких рядов, в которых среднее изменение (параметр Ь) существенно меньше, чем среднее колебание S(t), иначе говоря, показатель К значительно меньше единицы.
Логика применения метода заключается в том, что если колеблемость намного больше изменения тренда за единицу времени, то цепные абсолютные изменения, т. е. разности соседних уровней, в основном состоят из колебаний. В связи с этим корреляция абсолютных изменений будет мало отличаться от корреляции отклонений от тренда. Метод имеет и преимущество: не нужно вычислять тренд, ошибка в выборе типа тренда не влияет на конечный результат. Расчет идет непосредственно по исходным временным рядам. По данным табл. 9.3 имеем:
Δx = +5,57 ~= +5,8; Δy = +0,738 ~= +0,74.
В отличие от отклонений от тренда средняя величина цепных абсолютных изменений не равна нулю. В связи с этим для расчета параметров корреляции необходимо пользоваться полными формулами, а не сокращенной формулой (9.8). Соответствующие суммы квадратов и произведения отклонении от средних приростов приведены в табл. 9.4.
Исходя из них имеем:
что почти совпадает с ранее полученной величиной коэффициента корреляции отклонений от трендов.
Если тренды признаков являются экспонентами, то вместо корреляции отклонений от трендов можно применить метод корреляции цепных темпов роста уровней, поскольку именно темпы роста — основной параметр экспоненциальных трендов.