Остаются недостаточно проработанными следующие вопросы: насколько допустима корреляция абсолютных изменений, если тренды имеют другой вид (гиперболический, логистический, логарифмический и т. д.)?; если тренд факторного признака одного типа, а результативного — другого типа? Достаточного практического опыта для убедительного ответа на эти вопросы у авторов нет, они будут благодарны читателям, если кто-то из них предложит свои ответы на эти вопросы. Еще раз, и не последний, авторы подчеркивают, что наука — открытая система, продолжающийся процесс познания, открытия новых «материков» (реже) и «островов» (чаще) в бесконечном океане неведомого.
В заключение напомним, что метод корреляции отклонений от трендов основной, он работает независимо от того, одинаковы типы трендов коррелируемых показателей или нет. Прочие методы — суррогаты, имеющие чаще всего, ограничения по типам трендов.
Эти методы лучше применять только при явном преобладании колеблемости над тенденцией изменения за единицу времени, т. е. при малом показателе К для линейных трендов или малых аналогичных показателях для других типов трендов (см. разд. 8.3).
9.5. Корреляция с учетом лага и циклов
Среди природных и общественных явлений нередко встречаются такие, которые связаны между собой не в одном и том же периоде времени, а с некоторым запозданием — по-английски — lag, откуда пошел термин лаг. Например, капиталовложения в создание машиностроительного, автомобильного завода отразятся в росте объема производства не в том году, когда они произведены, а через два-три и более лет, капиталовложения в строительство крупной гидроэлектростанции — через 6–8 лет. При наличии лага в реальной связи изучаемых явлений измерять корреляцию факторного признака с результативным нужно, конечно, не по одновременным уровням, а с учетом лага. Например, отклонение от тренда капиталовложений скажется на отклонении от тренда выпуска продукции через к лет. Значит, измерять корреляцию нужно через произведения
Методика корреляции с учетом лага делится на два подвида:
А. Случай, когда величина лага известна заранее.
Б. Случай, когда саму величину лага следует определить на основе измерения корреляции.
Вначале рассмотрим случай А. Например, на сельскохозяйственном предприятии принят и длительное время действует следующий севооборот: после трех лет многолетних трав участок занимает пропашная культура: картофель, бобовые, овощи, под которые вносится большая доза органических удобрений, а в следующем году на участке высевают зерновые культуры. Необходимо измерить связь между дозой органических удобрений, внесенных под пропашные культуры, и урожайностью зерновых. В данном случае k = 1 году, расчет корреляции приведен в табл. 9.5.
При этом будем считать, что тренд дозы внесенных органических удобрений отсутствует или несуществен.
Средняя доза удобрений: X‾ = 451:11 = 41 т/га.
Тренд урожайности: y^i = 18,0 + 0,6∙ti; t = 0 в 1992 г.
Коэффициент корреляции с учетом лага в 1 год имеет вид:
Связь колебаний дозы удобрений под предшественник зерновых с колебаниями их урожайности на следующий год оказалась средней силы: за счет этой связи объясняется 35 % всей колеблемости урожайности.
Коэффициент регрессии: Ь(х) = 70,4/305 = 0,2308, т. е. 1 т удобрений под пропашные культуры в среднем давала прибавку урожайности зерновых на следующий год 0,23 ц/га.
Уравнение регрессии имеет вид: UYi+1(x) = 0,2308∙ΔXi, свободного члена это уравнение не имеет, так как средние отклонения от тренда и от средней дозы равны нулю. Рассчитанные по этой формуле значения урожайности, т. е. трендовые значения у^i + UY(X)i+1, даны в последней графе табл. 9.5.
Обратите внимание на особенности сумм произведений и сумм квадратов в формулах коэффициента корреляции и коэффициента регрессии: в сравнении с суммами при корреляции отклонений без лага число слагаемых на единицу меньше: в одной из сумм — от конца, в других — от начала. Если же лаг велик, то число слагаемых сильно сократится, а значит, корреляция станет менее надежной: ведь оценка надежности коэффициентов должна рассчитываться в этом случае не по общему числу членов первичного ряда, а исходя из числа реально участвующих в работе коэффициентов. При лаге в 5 лет это число составит (n — 5), а затем еще надо исключить две степени свободы при парной корреляции. Откуда следует еще один вывод: при коротком исходном ряде (рядах) и большом лаге показатели связи колебаний признаков будут заведомо ненадежны.