Информация в буфер записывается и считывается по импульсам WFCK и RFCK соответственно. Считанная информация разделяется на аудиоданные и субкод. Субкод — это служебная информация, которая содержит синхронизирующие биты, сведения о текущем треке, времени. Субкод используют сервосхемы для позиционирования лазерной головки в нужную точку. Скорость потока субкода составляет 58,8 кбит/с. Аудиоданные обрабатываются в звуковых схемах, и на выход поступает аналоговый аудиосигнал.
1.3. Преобразование звука
Преобразование звука из цифрового в аналоговый формат происходит в звуковых схемах. Первоначально данные левого и правого каналов смешаны (мультиплексированы) и размещены в одном потоке. Аудиоданные проходят дальнейшую обработку (интерполяция, замещение) в цифровых аудиосхемах.
Для улучшения качества звука и уменьшения шумов могут использоваться цифровые фильтры и схемы ускоренной выборки (OVERSAMPLING). Цифровые фильтры преобразуют разрядность аудиосигнала с 16 до 18 или 20 бит, уменьшая ступеньку квантования в выходном сигнале. При использовании 18-разрядного фильтра и ЦАП ступенька уменьшается в 4 раза и, соответственно, звук становится более приятным. Схемы ускоренной выборки перемещают шумы квантования (>22 кГц) в область более высоких частот. Данные для ЦАП считываются и преобразуются со скоростью в 2, 4, 8 или 16 раз большей, чем номинальная.
ЦАП преобразовывает цифровые сигналы в аналоговую форму. Возможны два варианта (рис. 1.5).
Рис. 1.5. Включение ЦАП в звуковых схемах
В дорогих моделях используется вариант, показанный на рис. 1.5,а. Мультиплексированный цифровой сигнал поступает на демультиплексор, который по тактирующим импульсам разделяет его на 2 цифровых потока соответственно для левого и правого каналов. Для каждого канала используется свой ЦАП. В другом варианте (рис. 1.5,б) применяется один ЦАП, аналоговый сигнал с которого разделяется коммутатором на два канала. В обоих случаях линия задержки используется для выравнивания по времени данных правого и левого каналов.
Аудиосигналы с выхода ЦАП усиливаются и поступают на выходные фильтры. Фильтры обрезают высокочастотные составляющие (>20 кГц), шумы квантования и сглаживают ступеньку.
В аудиосхемах используются транзисторные ключи, которые управляются сигналом MUTE и закорачивают выходной сигнал на корпус. Если диск считывается нормально, то в режимах "Воспроизведение" или "Перемотка по треку" процессор отключает блокировку звука. Во всех остальных режимах функция MUTE активизирована.
От качества фильтра напрямую зависит качество аудиосигнала. В дорогих моделях используют фильтры более высоких порядков.
1.4. Функционирование проигрывателя в различных режимах
1.4.1. Загрузка диска
При включении проигрывателя в сеть вырабатывается сигнал сброса Reset, который обнуляет регистры процессора. Процессор проверяет положение каретки, лазерной головки (при необходимости позиционирует в начальное положение) и наличие компакт-диска. В некоторых моделях при наличии диска проигрыватель переходит в режим воспроизведения.
При нажатии клавиши "Open/Close" процессор подает сигнал на двигатель каретки, каретка выезжает. При полном выезде каретки срабатывает концевик "Конечное положение каретки", и процессор останавливает двигатель. В некоторых моделях проигрывателей применяются электрические схемы без концевиков, которые по силе тока, потребляемого двигателем, определяют начальное и конечное положения каретки.
Диск устанавливается в каретку. При повторном нажатии клавиши "Open/Close" процессор запускает двигатель. Каретка заезжает, пока не сработает концевик "Начальное положение каретки". Диск устанавливается на столик и прижимается к нему. Проигрыватель пытается считать заголовок диска.
Информация с диска считывается в направлении от центра. Физически заголовок расположен в начале компакт-диска. В нем записана информация о количестве композиций, общем времени и т. п. Если информация считается удачно, на экране высветятся характеристики диска. В противном случае на дисплее появится сообщение "Error", "No Disc" или а в некоторых моделях режим воспроизведения будет заблокирован.