цепное: Δц = yn — yn-1;
базисное: Δ0 = yn — y0.
Если абсолютное изменение отрицательно, его следует называть абсолютным сокращением. Абсолютное изменение имеет ту же единицу измерения, что и уровни ряда с добавлением единицы времени, за которую определено изменение: 22 тыс. т. в год (или 1,83 тыс. т в месяц, или 110 тыс. т. в пятилетие). Без указания единицы времени, за которую произошло измерение, абсолютный прирост нельзя правильно интерпретировать.
В табл. 3.1 абсолютное изменение уровня не является константой тенденции.
Оно со временем возрастает, т. е. уровни ряда изменяются с ускорением. Ускорение — это разность между абсолютным изменением за данный период и абсолютным изменением за предыдущий период равной длительности:
Δi = Δi — Δi-1
Показатель абсолютного ускорения применяется только в цепном варианте, но не в базисном. Отрицательная величина ускорения говорит о замедлении роста или об ускорении снижения уровней ряда.
Как видно из табл. 3.1, ускорение является константой тенденции данного ряда, что свидетельствует о параболической форме этой тенденции. Ее уравнение имеет вид:
yi = y0 + ati + bti2, (3.1)
где у0 — уровень ряда в начальный (нулевой) период;
а — средний абсолютный прирост (по всему ряду);
Ь — половина ускорения;
ti - номера периодов.
По данным табл. 3.1 имеем:
yi = 100 + 10∙ti + 2∙ti2
Показатель ускорения абсолютного изменения уровней выражается в единицах измерения уровня, деленных на квадрат длины периода. В нашем случае ускорение составило 4 тыс. т в год за год, или 4 тыс. т∙год2. Смысл показателя следующий: объем производства (или добыча угля, руды) имел абсолютный прирост, возрастающий на 4 тыс. т. в год ежегодно.
Усвоить рассмотренные показатели поможет следующая аналогия с механическим движением: уровень — это аналог пройденного пути, причем начало его отсчета не в нулевой точке; абсолютный прирост — аналог скорости движения тела, а ускорение абсолютного прироста — аналог ускорения движения. Пройденный телом путь, считая и тот, который уже был пройден до начала отсчета времени в данной задаче, равен:
S = S0 + V0t + (at2/2)
где S0 — путь, пройденный до начала отсчета времени;
V0 — начальная скорость;
а — ускорение;
t — время, прошедшее от начала его отсчета в задаче.
Сравнивая с формулой (3.1), видим, что S0 — аналог свободного члена y0, V0 — аналог начального абсолютного изменения а; а/2 — аналог ускорения прироста Ь.
Система показателей должна содержать не только абсолютные, но и относительные статистические показатели. Относительные показатели динамики необходимы для сравнения развития разных объектов, особенно если их абсолютные характеристики различны. Предположим, другое предприятие увеличивало производство аналогичной продукции с тенденцией, выраженной уравнением тренда:
yi = 20 + 4t + 0,5t2
И абсолютный прирост, и ускорение роста объема продукции во втором предприятии гораздо меньше, чем в первом. Но можно ли ограничиться этими показателями и сделать вывод, что развитие второго предприятия происходит более медленными темпами, чем первого? Меньший уровень еще не есть меньший темп развития, и это покажет относительная характеристика тенденции динамики — темп роста.
Темп роста — это отношение сравниваемого уровня (более позднего) к уровню, принятому за базу сравнения (более раннему). Темп роста исчисляется в цепном варианте — к уровню предыдущего года, а в базисном — к одному и тому же, обычно начальному уровню, что иллюстрируется формулой (3.2). Он свидетельствует о том, сколько процентов составляет сравниваемый уровень по отношению к уровню, принятому за базу, или во сколько раз сравниваемый уровень больше уровня, принятого за базу. При этом если уровни снижаются со временем, то сказать, что последующий уровень «больше в 0,33 раза», или составляет 33,3 % базового уровня, это, разумеется, означает, что уровень уменьшился в 3 раза. Но будет неверно, если сказать, что «уровень меньше в 0,33 раза». Темп изменения в разах всегда говорит о том, во сколько раз сравниваемый уровень больше.