Выбрать главу

To make this argument valid it must of course be supposed, that the announcements made by the witness are average specimens of his general veracity and accuracy; or, at least, that they are neither more nor less so in the case of the black and white balls, than in the case of the thousand tickets. This assumption, however, is not warranted. A person is far less likely to mistake, who has only one form of error to guard against, than if he had 999 different errors to avoid. For instance, in the example chosen, a messenger who might make a mistake once in ten times in reporting the number drawn in a lottery, might not err once in a thousand times if sent simply to observe whether a ball was black or white. Laplace’s argument, therefore, is faulty even as applied to his own case. Still less can that case be received as completely representing all cases of coincidence. Laplace has so contrived his example, that though black answers to 999 distinct possibilities, and white only to one, the witness has nevertheless no bias which can make him prefer black to white. The witness did not know that there were 999 black balls in the box and only one white; or if he did, Laplace has taken care to make all the 999 cases so undistinguishably alike, that there is hardly a possibility of any cause of falsehood or error operating in favor of any of them, which would not operate in the same manner if there were only one. Alter this supposition, and the whole argument falls to the ground. Let the balls, for instance, be numbered, and let the white ball be No. 79. Considered in respect of their color, there are but two things which the witness can be interested in asserting, or can have dreamed or hallucinated, or has to choose from if he answers at random, viz., black and white; but considered in respect of the numbers attached to them, there are a thousand; and if his interest or error happens to be connected with the numbers, though the only assertion he makes is about the color, the case becomes precisely assimilated to that of the thousand tickets. Or instead of the balls suppose a lottery, with 1000 tickets and but one prize, and that I hold No. 79, and being interested only in that, ask the witness not what was the number drawn, but whether it was 79 or some other. There are now only two cases, as in Laplace’s example; yet he surely would not say that if the witness answered 79, the assertion would be in an enormous proportion less credible, than if he made the same answer to the same question asked in the other way. If, for instance (to put a case supposed by Laplace himself), he has staked a large sum on one of the chances, and thinks that by announcing its occurrence he shall increase his credit; he is equally likely to have betted on any one of the 999 numbers which are attached to black balls, and so far as the chances of mendacity from this cause are concerned, there will be 999 times as many chances of his announcing black falsely as white.

Or suppose a regiment of 1000 men, 999 Englishmen and one Frenchman, and that of these one man has been killed, and it is not known which. I ask the question, and the witness answers, the Frenchman. This was not only as improbable a priori, but is in itself as singular a circumstance, as remarkable a coincidence, as the drawing of the white ball; yet we should believe the statement as readily, as if the answer had been John Thompson. Because, though the 999 Englishmen were all alike in the point in which they differed from the Frenchman, they were not, like the 999 black balls, undistinguishable in every other respect; but being all different, they admitted as many chances of interest or error, as if each man had been of a different nation; and if a lie was told or a mistake made, the misstatement was as likely to fall on any Jones or Thompson of the set, as on the Frenchman.

The example of a coincidence selected by D’Alembert, that of sixes thrown on a pair of dice ten times in succession, belongs to this sort of cases rather than to such as Laplace’s. The coincidence is here far more remarkable, because of far rarer occurrence, than the drawing of the white ball. But though the improbability of its really occurring is greater, the superior probability of its being announced falsely can not be established with the same evidence. The announcement “black” represented 999 cases, but the witness may not have known this, and if he did, the 999 cases are so exactly alike, that there is really only one set of possible causes of mendacity corresponding to the whole. The announcement “sixes not drawn ten times,” represents, and is known by the witness to represent, a great multitude of contingencies, every one of which being unlike every other, there may be a different and a fresh set of causes of mendacity corresponding to each.

It appears to me, therefore, that Laplace’s doctrine is not strictly true of any coincidences, and is wholly inapplicable to most; and that to know whether a coincidence does or does not require more evidence to render it credible than an ordinary event, we must refer, in every instance, to first principles, and estimate afresh what is the probability that the given testimony would have been delivered in that instance, supposing the fact which it asserts not to be true.

With these remarks we close the discussion of the Grounds of Disbelief; and along with it, such exposition as space admits, and as the writer has it in his power to furnish, of the Logic of Induction.

Book IV.

Of Operations Subsidiary To Induction.

“Clear and distinct ideas are terms which, though familiar and frequent in men’s mouths, I have reason to think every one who uses does not perfectly understand. And possibly it is but here and there one who gives himself the trouble to consider them so far as to know what he himself or others precisely mean by them; I have, therefore, in most places, chose to put determinate or determined, instead of clear and distinct, as more likely to direct men’s thoughts to my meaning in this matter.”—Locke’s Essay on the Human Understanding; Epistle to the Reader.

“Il ne peut y avoir qu’une méthode parfaite, qui est la méthode naturelle; on nomme ainsi un arrangement dans lequel les êtres du même genre seraient plus voisins entre eux que ceux de tous les autres genres; les genres du même ordre, plus que ceux de tous les autres ordres; et ainsi de suite. Cette méthode est l’idéal auquel l’histoire naturelle doit tendre; car il est évident que si l’on y parvenait, l’on aurait l’expression exacte et complète de la nature entière.”—Cuvier, Règne Animal, Introduction.

“Deux grandes notions philosophiques dominent la théorie fondamentale de la méthode naturelle proprement dite, savoir la formation des groupes naturels, et ensuite leur succession hiérarchique.”—Comte, Cours de Philosophie Positive, 42me leçon.

Chapter I.

Of Observation And Description.

§ 1. The inquiry which occupied us in the two preceding Books, has conducted us to what appears a satisfactory solution of the principal problem of Logic, according to the conception I have formed of the science. We have found, that the mental process with which Logic is conversant, the operation of ascertaining truths by means of evidence, is always, even when appearances point to a different theory of it, a process of induction. And we have particularized the various modes of induction, and obtained a clear view of the principles to which it must conform, in order to lead to results which can be relied on.