Выбрать главу

When considered in detail, the movement of air masses and their effects provide the basis for a division of the continent into eight climatic regions. These are the hot desert, semiarid, tropical wet-and-dry, equatorial (tropical wet), Mediterranean, humid subtropical marine, warm temperate upland, and mountain regions.

Camel caravan in the Sahara, Morocco.© Vladimir Wrangel/Shutterstock.com

The hot desert region consists of the Sahara and Kalahari deserts, which are always under the influence of dry continental tropical air masses, and the northern Kenya–Somali desert, the aridity of which is principally caused by the stable nature of the maritime air masses that pass over it throughout the year. The stability of these maritime air masses is induced by their passing over the cool body of water offshore. In addition to aridity, the desert climate is characterized by high mean monthly temperatures; the diurnal (daily) temperature range is, however, greater than the annual range of the mean monthly temperature.

Africa: major climate regionsAfrica's climate is dominated by desert conditions along vast stretches of its northern and southern fringes. The central portion of the continent is wetter, with tropical rainforests, grasslands, and semi-arid climates. Encyclopædia Britannica, Inc./Kenny Chmielewski

Semiarid climatic regions fringe the desert areas and include the greater part of the land south of the Zambezi River. They differ from true desert regions in being just within reach of the ITCZ in the course of its seasonal movement and therefore receiving more rainfall. Temperatures are about the same as those in the desert regions.

The tropical wet-and-dry region is often called the savanna climatic region; this implies, incorrectly, that all areas with savanna vegetation have this type of climate. This region covers a little less than half of the total surface area of the continent, extending toward the Equator from the semiarid areas. The great distinguishing feature of this climatic region is the seasonal character of its rainfall. During the period of high sun, the maritime air masses produce up to six months of rainfall, the length of the rainy season depending on nearness to the Equator. The rest of the year is dry. In a few places—for example, on the coast of Mauritania and Senegal—there is also a little rainfall in the period of low sun. As in the desert and semiarid climatic zones, mean monthly temperatures show less variation than daily temperatures. In western Africa the period of low sun corresponds to the harmattan season. The harmattan is a warm, dry, northeasterly or easterly wind that blows out of the southern Sahara and is frequently laden with large quantities of sand and dust.

Regions with the equatorial, or tropical wet, type of climate, or variants thereof, are the wettest in Africa. There are two peak periods of rainfall corresponding to the double passage of the ITCZ. Because areas with an equatorial climate are constantly covered by warm maritime air masses, variations in their monthly and daily temperatures are less pronounced than in the tropical wet-and-dry regions.

Marked variations in the rhythm of equatorial climate sometimes occur. For example, the rainfall may be monsoonal and the second rainy season may be all but nonexistent. But the most notable anomaly can be observed on the western African coast from around Cape Three Points, Ghana, eastward to Benin, where, although the bimodal rainfall regime prevails, the total annual precipitation is less than 40 inches (1,000 millimetres). Among the many explanations that have been suggested are that the presence of a cold body of water offshore chills the lower layers of the maritime air mass and makes it stable, that the body of cold air that forms offshore diverts the incoming airstreams to the west and east of the anomalously dry area, that there is a strong tendency for the winds to blow parallel to the shore during the rainy seasons, that the absence of highlands deprives the region of orographic (mountain) rainfall, that fluctuations in the offshore moisture-bearing winds occur during the rainy season and reduce rainfall, and that local meteorological peculiarities of thunderstorms contribute to the reduction in rainfall.

In the northern and southern extremities of the continent, there is a dry summer subtropical, or Mediterranean, type of climate. Rain falls only in winter (December–January in North Africa, June–July in Southern Africa), although in some localities it may fall in autumn (September in North Africa, April in Southern Africa). Mean monthly temperatures are lower than in tropical climates, dropping to about 50 °F (10 °C) in winter, while summer (June–July in North Africa, and December–January in Southern Africa) temperatures may sometimes exceed those of tropical climates. Clear blue skies are characteristic.

The humid subtropical marine climate is restricted to the southeast coast of Africa. This region is characterized by rainfall throughout the year, but it is heaviest in summer. In South Africa, south of KwaZulu-Natal, the winter rainfall is more pronounced, and the temperatures are a little lower than in the north. Thus, at Port Elizabeth there are six months when temperatures are below 62 °F (17 °C), while at Durban mean monthly temperatures do not fall below 64 °F (18 °C).

The warm temperate upland climatic region is found on the Highveld of Southern Africa. Its rainfall regime is similar to that of the tropical wet-and-dry climate, but temperatures are greatly modified by the altitude; frost, for example, occasionally occurs in Lesotho. Toward the coast the climate shows maritime characteristics, and there is a tendency toward winter rainfall.

The mountain climatic region includes the high mountain areas of Ethiopia and the lake region of East Africa. In some respects the climate is similar to the warm temperate upland climate, except that temperatures are even lower and snow occurs on the tops of the highest peaks, such as Kilimanjaro. The rainfall regime is similar to that of the adjacent lowland areas. Kwamina Busumafi Dickson Plant life

African vegetation develops in direct response to the interacting effects of rainfall, temperature, topography, and type of soil; it is further modified by the incidence of fire, human agriculture, and grazing and browsing by livestock. Of the total land area of the continent, forests cover about one-fifth; woodlands, bushlands, grasslands, and thickets about two-fifths; and deserts and their extended margins the remaining two-fifths. Ecological relationships

Until about two million years ago Africa’s vegetation had always been controlled by the interactions of climate; geology, soil, and groundwater conditions (edaphic factors); and the activities of animals (biological factors). The addition of humans to the latter group, however, has increasingly rendered unreal the concept of a fully developed “natural” vegetation—i.e., one approximating the ideal of a vegetational climax. Nevertheless, in broad terms, climate remains the dominant control over vegetation. Zonal belts of precipitation, reflecting latitude and contrasting exposure to the Atlantic and Indian oceans and their currents, give some reality to related belts of vegetation. Early attempts at mapping and classifying Africa’s vegetation stressed this relationship: sometimes the names of plant zones were derived directly from climates. In this discussion the idea of zones is retained only in a broad descriptive sense.

As more has become known of the many thousands of African plant species and their complex ecology, naming, classification, and mapping have also become more particular, stressing what was actually present rather than postulating about climatic potential. In addition, over time more floral regions of varying shape and size have been recognized. Many schemes have arisen successively, all of which have had to take views on two important aspects: the general scale of treatment to be adopted and the degree to which human modification is to be comprehended or discounted.