Выбрать главу

Еще в конце прошлого столетия высказывались различные предположения о путях связывания азота. Рассматривали два возможных способа связывания молекулярного азота — окислительный и восстановительный. Крупнейший специалист в области азотного питания растений Д. Н. Прянишников считал переход от N2 к NH3 через оксиды азота невозможным и противоречащим принципу допустимой экономии энергии у организмов. Известный русский ученый С. Н. Виноградский в конце прошлого столетия впервые высказал предположение о путях восстановительного связывания молекулярного азота до аммиака. В своей работе «Об усвоении микробами газообразного азота атмосферы» он писал: «Механизм процесса усвоения азота представляется в данном случае как действие водорода в момент его выделения на газообраз-

HN=NH - N=N ---► N20
\ Н201 , н2о
Диимидhno2
2Н —NH,OHАзотистая
h2n—nh2кислота
Гидразин^ NSSsi/ /"идроксиломин -2NH31
Рис. 19. Гипотетическая схема превращения азота

ный азот в живой протоплазме клетки. Гипотеза о том, что синтез аммиака является непосредственным результатом этого процесса, кажется нам обоснованной». Теорию С. Н. Виноградского о фиксации молекулярного азота через аммиак развивал П. А. Костычев с сотрудниками. В настоящее время восстановительный путь связывания молекулярного азота при различных вариантах промежуточных этапов принят большинством исследователей (рис. 19).

В течение последних лет проводили интенсивные исследования нитрогеназы — основного фермента, осуществляющего процесс азотфиксации. У бобовых культур нитрогеназа находится в клубеньковых бактериях, приобретающих внутри клубенька форму бактероидов. Долгое время изучение биохимической сущности процесса фиксации азота задерживалось из-за невозможности получения содержащих нитрогеназу бесклеточных экстрактов из свободноживущих микроорганизмов и симбионтов, способных фиксировать молекулярный азот.

Выделение активного азотфиксирующего ферментного комплекса — нитрогеназы возможно только при соблюдении анаэробных условий.

Впервые бесклеточные экстракты из клубеньков сои были получены в лаборатории Эванса в 1968 г. Нами в 1970 г. был выделен ферментный комплекс (нитрогеназа) из бактероидов клубеньков люпина и сои. Нитрогеназу разделили на два белковых компонента. Один из них с молекулярной массой 164 000 содержал молибден и железо, а второй имел молекулярную массу 56 000 и содержал только железо. Каждый из этих белковых компонентов отдельно не фиксировал молекулярный азот, но их смесь обладала значительной азотфиксирующей активностью. Бесклеточная азотфиксирую-щая ферментная система из клубеньков бобовых очень похожа на ферментную систему свободноживущих азотфиксаторов.

В настоящее время нитрогеназа выделена из ряда бактерий различных систематических групп и очищена.

У большинства микроорганизмов нитрогеназа инактивируется кислородом, причем Fe-белок более чувствителен к кислороду, чем Мо—Fe-белок. Помимо этого Fe-белок большинства микроорганизмов очень чувствителен к холоду и инактивируется при температуре около О °С. Для реакции восстановления азота необходимо наличие обоих компонентов нитрогеназы, АТФ, источника электронов и ионов Mg2+. Процесс биологической фиксации азота сопряжен с гидролизом АТФ, при этом образуются АТФ с ионами магния. Большинство исследователей считают, что на фиксацию 1 молекулы азота затрачивается 15 молекул АТФ.

Характерная особенность нитрогеназы — восстановление не только молекулярного азота, но и других субстратов, обладающих тройными связями. Это позволило широко использовать метод определения азотфиксации по восстановлению ацетилена в этилен.