Валет Червей танцевал... угадайте, с кем? С Герцогиней!
— Неужели Младенец всё-таки заснул? — с улыбкой спросила Алиса Герцогиню.
Вместо ответа Герцогиня показала глазами на воздушный шар: в корзине сидел Младенец и с интересом смотрел по сторонам.
Вдруг Алиса заметила, что канат, которым корзина привязана к серебряному крюку, вот-вот развяжется!
— Младенца сейчас унесёт одного! — мелькнуло в голове у Алисы.
Она бросилась к воздушному шару, но не успела: узел развязался совсем, и корзина уже оторвалась от паркета. В последний момент Алиса прыгнула в корзину.
— Вдвоём нам будет веселей! — обрадовался Младенец. Шар начал набирать высоту. Алиса глянула вниз: все подняли головы и смотрели вслед улетающему воздушному шару. Алиса помахала рукой, и в ответ внизу закачался лес рук.
— До свидания! — крикнула Алиса, и руки замахали чаще. Она погладила Младенца по голове, и он почему-то замурлыкал; волосы у Младенца оказались удивительно пушистыми.
Чем выше поднималась Алиса, тем ярче сверкали короны на головах королей и королев. Наконец, блеск бесконечного множества корон стал нестерпимым, Алиса зажмурилась и... проснулась!
Она сидела на диване, свернувшись калачиком. Прямо в лицо ей светили из окна лучи заходящего солнца, на коленях лежал раскрытый учебник математики, а пальцы Алисы погрузились в тёплую шерсть Дины — кошка спала рядом с Алисой и тихонько мурлыкала.
— Ты даже не представляешь, какой мне приснился удивительный сон! — сказала Алиса.
Кошка приоткрыла глаза и посмотрела на Алису таким взглядом, что Алиса поняла: Дина всё знает, но просто не считает нужным об этом рассказывать...
Алиса перевернула несколько страниц учебника, и ей показалось, будто числа и фигуры подмигивают ей, как старые знакомые.
— Я должна рассказать свой сон мистеру Доджсону, — подумала Алиса. — В моём сне была и сказка и математика — и в том и в другом мистер Доджсон разбирается лучше всех!
МОЖЕТ ЛИ ЧАСТЬ РАВНЯТЬСЯ ЦЕЛОМУ?
Любой нормальный человек скажет, что не может, потому что часть меньше целого!
Однако Галилей не был нормальным человеком — он был великим учёным. Поэтому он сомневался во всём и подвергал проверке всё, что мог проверить. Возьмём, сказал он, бесконечный ряд натуральных чисел:
В этом ряду некоторые числа являются квадратами, например, 1, 4, 9, 16. Однако чем дальше движемся мы вдоль натурального ряда, тем реже будут встречаться квадраты: среди первых ста натуральных чисел мы найдём десять квадратов (одна десятая часть от ста), а среди первого миллиона натуральных чисел — только тысячу квадратов (это всего одна тысячная часть от миллиона). В путешествии по натуральному ряду нам встретятся участки любой длины, состоящие только из чисел — «неквадратов»: например, после триллиона идут подряд два миллиона чисел, каждое из которых не является квадратом! Зато стоящие рядом квадраты не попадутся нам никогда!
А теперь, зная всё это, скажите — чего больше: всех натуральных чисел или только квадратов?
Ответ, казалось бы, не вызывает сомнений: ведь числа-квадраты — это только малая часть всех чисел! Однако давайте, следуя Галилею, напишем под каждым натуральным числом его квадрат:
Этот ряд мы можем продолжать сколько угодно: ведь у любого натурального числа есть квадрат. Но это как раз и означает, что квадратов столько же, сколько всех натуральных чисел! А значит, часть действительно равна целому!
Таково поразительное свойство бесконечных множеств, открытое Галилеем. Этим свойством обладают, конечно, только бесконечные множества! Потому оно и кажется нам таким необычным — ведь в жизни мы не встречаемся и никогда не встретимся с бесконечными множествами.
Бесконечность — это гениальная выдумка математиков, и единственное требование к этой выдумке состоит в том, чтобы в ней не было «обмана», то есть противоречий. Однако для того, чтобы выполнить это требование, приходится отказаться от многого из того, к чему мы привыкли, имея дело с конечными множествами. И прежде всего — от аксиомы, что часть всегда меньше целого!
Чтобы вам легче было отказываться от «конечных» привычек, приведём ещё один пример. Оставим в ряду натуральных чисел только каждое десятое число:
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, ...
Заметьте, что «девять десятых» всех натуральных чисел мы при этом отбросили! А теперь сделаем «фокус» — зачеркнём у каждого из оставленных чисел нуль в конце. Что мы получим? Конечно, снова весь натуральный ряд — он, оказывается, ничуть не уменьшился от того, что мы оставили только «одну десятую» его часть!