Выбрать главу

С ростом «пракрыльев» их нагревательная способность увеличилась не слишком сильно. Наиболее оптимальная длина крыльев в этом смысле равна 10 миллиметрам. Достигнув этих размеров, крылья позволили насекомым парить в воздухе.

У БАБОЧКИ — РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Бабочки могут совершать перелеты на сотни и тысячи километров — их миграцию из Европы в Америку обнаружил еще Колумб. При этом скорость полета у некоторых бабочек превышает пятьдесят километров в час. Но дело в том, что летает дневная бабочка совсем не так, как, скажем, большинство насекомых или птицы.

Вспыхнул экран, и на нем появилась бабочка-лимонница, медленно, словно нехотя шевелящая двумя парами своих крыльев, — ее снимали скоростной кинокамерой. Крылья поднимались все выше и выше, пока, наконец, не «склеились» в пластинку. Потом так же неторопливо пошли вниз, распахнулись во всю ширь и снова «склеились» под брюшком.

Именно это «склеивание» и смущало ученых. Как вообще такая бабочка может держаться в воздухе, если почти треть времени взмаха у нее сложены крылья? Ведь в таком положении они не создают подъемной силы, и бабочка тут же должна была терять высоту. Почему же этого не происходит?

Поиском ответа на этот вопрос и занялись ученые Института эволюционной морфологии и экологии животных имени А. Н. Северцова Академии наук СССР. В лаборатории морфологии беспозвоночных под руководством доктора биологических наук В. Свешникова были проведены сотни экспериментов, во время которых полет бабочки-лимонницы снимали со скоростью 2000 кадров в секунду. Потом исследователи десятки раз анализировали заснятые пленки, делали отпечатки с отдельных кадров, меняли ракурс съемки. И рапидная съемка позволила им обнаружить то, чего не знали до сих пор: при «склеивании» крыльев как в верхнем, так и в нижнем положении бабочка не только не теряла высоты, а, наоборот, нередко рывком увеличивала скорость и взмывала вверх. За счет чего?

Стрекочет кинопроектор, и поднимающиеся крылья бабочки на экране сходятся все ближе. Вот они уже почти слились в узкую вертикальную черту. Но что это? Между задними крыльями над телом насекомого отчетливо виден канал почти с правильным овальным сечением.

Вот это и есть реактивный двигатель. Удалось установить, что в полете бабочка весьма хитроумно смыкает крылья. В какой-то момент передняя пара образует своего рода воздухозаборник, а задняя — реактивный канал. Самое же интересное происходит тогда, когда он заполнится воздухом. Задние крылья продолжают сближаться, но не одновременно всей поверхностью, а как бы волной: сначала сходятся передние кромки, а уже потом — задние. Благодаря этому крылья с силой выталкивают «зажатую» между ними порцию воздуха из «сопла», создавая тем самым реактивную струю…

Обычно эта струя направлена под небольшим углом вниз. Поэтому часть реактивной силы удерживает бабочку в воздухе и даже помогает набрать высоту, а другая часть сообщает ей скорость. Когда же бабочка разводит крылья, делая очередной взмах, канал распадается. Но теперь уже он и не нужен — она летит на машущих крыльях.

ЗАЧЕМ ПЧЕЛЕ ЗАРЯД?

Когда рано утром пчела покидает улей, она слегка наэлектризована, несет слабый отрицательный заряд. Но вскоре в ходе полета он сменяется у нее на положительный. Причем его величина к полудню постепенно нарастает, достигая максимума (1,5–1,8 вольта) в хороший солнечный день.

Положительный электрозаряд приносит пчелам немалые выгоды. Ведь растения и их цветы тоже наэлектризованы, но в отличие от пчел они заряжены отрицательно. Поэтому при подлете пчелы пыльца не разлетается, а прочно притягивается и хорошо удерживается на ее мохнатом тельце. В итоге пчела больше запасает корма и попутно лучше переопыляет растения. При этом, уменьшая отрицательный заряд оставшейся пыльцы, пчела как бы предупреждает своих подруг о взятии нектара с цветка, на котором она побывала.

Электрический заряд возвратившейся в улей пчелы — это также своеобразная информация о расположении места взятка, расстоянии до него. Ведь чем длиннее ее маршрут, тем больший заряд она приобретает. Путем измерения электростатических зарядов пчел можно будет точнее определить время перевозок ульев с одного места на другое для лучшего переопыления садов, овощных плантаций, семенников клевера, посевов других культур.

ЭЛЕКТРИЧЕСКИЙ ЯЗЫК ПЧЕЛЫ

Летом с первыми лучами солнца ульи покидают лишь отдельные пчелы. Остальные же — в семье их обычно тридцать и более тысяч — ждут возвращения «разведчиц», которые проинформируют, куда предстоит коллективный вылет за нектаром. Как передается такая информация другим пчелам?

На этот вопрос удалось ответить доктору биологических наук Е. Еськову, заведующему кафедрой зоологии Рязанского педагогического института.

«Язык» пчел основан на колебательных движениях их тела, сопровождающихся пульсирующими звуковыми сигналами. Именно так насекомые передают информацию о направлении полета, расстоянии. А давая своим сестрам пробы принесенного корма, сообщают о его качестве, запахе. Сопоставив сведения, полученные от разных сигнальщиц, семья определяет, куда лететь, где нектар и пыльца лучше.

Пчела — это живой генератор и приемник статического электричества. Электрический заряд возникает при трении пчел о воск, дерево рамок, летка. Однако для формирования и передачи обширной информации такого заряда недостаточно. Обратив внимание на раскачивание брюшка, ученые установили, что именно таким образом пчела «сгущает» электрические заряды, усиливая их.

ФАРМАЦЕВТЫ ИЗУЧАЮТ ЯД СКОРПИОНА

Собирать ценный для фармацевтов продукт — яд скорпиона — научились бакинские ученые. Они используют в качестве раздражителя электрические импульсы и добиваются таким образом многократного выделения яда.

Действие яда скорпионов пока сравнительно мало изучено. Известно только, что еще в глубокой древности его с успехом применяли для лечения расстройств нервной системы. Сейчас в исследовательских учреждениях СССР ведется изучение действия яда на организм человека для разработки новых лекарственных препаратов.

ПАУТИНА И «ПАДАЮЩИЕ» ДОМА

Моллюски, раковины, стебли растений — ранее «заповедная зона» ботаников и зоологов — теперь интенсивно изучаются архитекторами-биониками. Их цель — взять и использовать все лучшее, что создано природой за миллионы лет эволюции. В нашей стране в ЦНИИ теории и истории архитектуры создана специальная лаборатория, главное направление которой — решить, насколько удобна, красива, рациональна будет для архитектуры та или иная форма живой природы.

Если сравнить коэффициент стойкости обычного стебля пшеницы и самого высокого свободно стоящего сооружения в Европе — Останкинской телебашни, то у последней он раз в 20 меньше, чем у стебля злаков.

Невольно напрашивается вопрос: как использовать те принципы, которые лежат в основе «строительства» живой природы, для нужд архитектуры и строительства?

В живой природе постоянно действует принцип максимального переключения работы конструкции на растяжение в стержне. Он-то и функционирует в целом ряде экономичных конструкций.

Способность природных паутин выдерживать большие растягивающие усилия самым оригинальным способом использовал архитектор Г. Борисовский в проекте «падающих» домов.

Представьте себе две поставленные на достаточно большом расстоянии железобетонные колонны. Заставим их падать в противоположные стороны друг от друга, но между ними подвесим прочный стальной канат, а основание колонн зафиксируем шарнирами. Канат удержит колонны от падения, а сам натянется как струна. Подпорные колонны приобретут устойчивость, канат превратится в жесткую конструкцию. Если заставить «падать» два ряда колонн (или две стены), а между ними натянуть по этажам сетки}или мембраны, то они натянутся и превратятся в междуэтажные перекрытия.

Паук также рассчитывает на натяжение своей паутины наклонными (падающими) ветвями, к которым прикреплены ее нити.