5
Существует и «более скромная версия» типичного оправдания, но она заслуживает упоминания лишь в нескольких словах.
Итак, ответ второй: «Я ни в чем не преуспел. Я делаю то, что делаю, по стечению обстоятельств. Мне никогда не предоставлялась возможность заняться чем-либо еще». Для меня это настолько же убедительное объяснение. Верно, у большинства людей ничто не получается хорошо. Тогда выбор их профессии не имеет значения, и говорить тут особенно не о чем. Такой ответ убедителен, хотя едва ли приемлем для человека, обладающего хоть толикой гордости; и я полагаю, что он вряд ли удовлетворил бы кого-то из нас.
6
Настало время вернуться к первому вопросу из третьей главы, ответ на который дать гораздо труднее, чем на второй. Стоит ли заниматься математикой – в том смысле, который в это понятие вкладываю я и другие математики, и если стоит, то почему?
Я вновь пролистал первые страницы своей инаугурационной лекции в Оксфорде в 1920 году, где, по сути, привел основные доводы в оправдание математики. Изложены они крайне сжато (всего лишь на паре страниц) и написаны таким языком (видимо, тогда я так представлял себе «оксфордский стиль»), за который мне сегодня неловко. Тем не менее, несмотря на несовершенство формы, суть вопроса я все-таки донес. Поэтому считаю уместным предварить дальнейшее обсуждение кратким пересказом тезисов той лекции.
(1) Прежде всего я подчеркнул безвредность математики: «изучение математики, даже если и бесполезно, совершенно безобидно и безвредно». Я по-прежнему в этом убежден, хотя сознаю, что едва ли обойдусь без развернутого и подробного объяснения.
«Бесполезна» ли математика? Простой ответ: нет – хотя бы уже потому, что занятия ею доставляют многим огромное удовольствие. Однако я употребил слово «полезный» в более узком значении: есть ли от математики польза, непосредственная польза, как от других наук вроде химии или физиологии? Этот вопрос уже не назовешь ни простым, ни однозначным, и на него я тоже отвечу «нет», хотя многие математики и большинство не имеющих отношения к математике людей не задумываясь ответят «да».
«Безобидна» ли математика? Ответ на этот вопрос также неочевиден, и я предпочел бы вовсе его избежать, поскольку он сводится к роли науки в войне. Но можно ли считать математику безвредной в противоположность, например, той же химии? К обоим вопросам я вернусь чуть позже.
(2) Далее я перешел к тому, что «в масштабах Вселенной, где все мы, по сути, зря теряем время, жизнь нескольких университетских мужей, потраченная на бесполезное занятие, – не такая уж страшная катастрофа». Здесь я, похоже, решил примерить на себя или, скорее, изобразить преувеличенное смирение, от которого отрекся выше. Уверен, что просто неудачно выразился, пытаясь в одно предложение вместить все то, о чем подробно расписал в третьей главе. Я имел в виду, что у нас, ученых мужей, в самом деле имеются кое-какие таланты и что мы поступаем правильно, старательно доводя их до совершенства.
(3) Наконец (в выражениях, которые теперь выглядят до боли высокопарно), я заявил о непреходящем характере математических достижений:
«Возможно, наши деяния невелики, но они остаются надолго. А создать нечто более или менее долговечное, будь то стихи или теорема по геометрии, значит сделать то, что выходит за рамки возможностей большинства представителей человеческого рода».
И далее:
«Сейчас, в эпоху противоборства между древними и современными учениями, хоть кто-то должен замолвить словечко за науку, которая не началась с Пифагора и не закончится Эйнштейном, а останется навечно самой древней и самой молодой из всех наук».
Если не обращать внимания на пафос, то по существу мысль верная. Я остановлюсь на ней подробнее, не предваряя ее мнениями по остальным вопросам, которые пока оставлю открытыми.