Риг. 155. Как изменится положение оси вращения гироскопа, получившего толчокРис. 154. Гироскоп
Снаряды различных орудий делают от 200 до 500 оборотов в секунду.
Колесо автомобиля на полном ходу делает в секунду около 16 оборотов, винт самолета – от 35 до 75. Снаряд вращается в 30 раз быстрее автомобильного колеса и в 5–7 раз быстрее, чем воздушный винт самолета.
Эта огромная скорость достаточна, чтобы обеспечить устойчивость современного продолговатого снаряда во время полета.
Но вернемся к вопросу о вращении летящего снаряда.
Летящий гироскоп
Если бы снаряд был в полете вполне устойчив, он летел бы, как изображено на рис. 156, и падал бы на землю не головой, а дном.
На самом же деле снаряд летит не так.
Еще один опыт с гироскопом поможет нам лучше понять особенности полета снаряда.
Навесим груз на один из концов оси вращения маховика, как изображено на рис. 154.
Вы думаете, вращающийся гироскоп наклонится вниз, в сторону груза? Ничуть не бывало: гироскоп повернется вокруг своей вертикальной оси слева направо, как показывает стрелка на рис. 154.
Попробуйте теперь толкнуть гироскоп, ударить по одному из концов горизонтальной оси (см. рис. 155). Казалось бы, гироскоп должен от такого толчка повернуться на своей вертикальной оси.
Не тут–то было: на самом деле гироскоп начнет поворачиваться вокруг горизонтальной oqh так, как изображено на рис. 155.
В этом и заключается основное свойство гироскопа: он изменяет положение своей оси, двигаясь всегда под прямым углом к направлению действия внешней силы и в сторону своего вращения.
При этом он подчиняется такому правилу: если какая–то точка гироскопа получила пголчок, направленный перпендикулярно (по нормали) к его оси, то от толчка гироскоп отклонится в ту сторону, куда должна прийти через три четверти оборота точка, получившая толчок (рис. 157).
Рис. 156. Так летел бы вращающийся снаряд в безвоздушном пространстве
Быстро вращающийся во время полета снаряд напоминает маховик гироскопа. Как и гироскоп, снаряд стремится сохранить положение своей оси в пространстве. Но при этом снаряд, конечно, опускается под линией бросания. Пока ось снаряда совпадала с касательной к траектории, сопротивление воздуха распределялось равномерно по всем точкам головной части снаряда и только замедляло его полет (см. рис. 150).
Рис. 157. Как отражается на вращающемся снаряде полученный им толчок
Рис. 158. Действие сопротивления воздуха на вращающийся снаряд
Но едва лишь ось снаряда начала отходить от касательной к траектории (это произошло в самом начале движения), как снаряд подставил сопротивлению воздуха боковую поверхность корпуса (см. рис. 151).
Невращающийся снаряд опрокинулся бы при этом.
Но снаряд вращается. Как и маховик гироскопа, он стремится сохранить устойчивость; на действие внешней силы он отвечает поворотом в направлении, перпендикулярном к тому, по которому действует сила.
Сопротивление воздуха толкает головную часть снаряда снизу вверх; снаряд отвечает на это тем, что поворачивает головную часть
вправо, под прямым углом к направлению действия внешней силы и в сторону своего вращения (рис. 158).
Рис. 159. Коническое вращение головной части снаряда
В этом новом положении воздух сильнее давит на снаряд слева, стремится отклонить его головную часть вправо.
Упрямый снаряд–гироскоп повернет ее вниз. Тогда воздух, действуя на снаряд сверху, начнет отклонять его головную часть вниз. А снаряд–гироскоп сделает опять по–своему – повернет ее влево. Как только воздух попробует отклонить головную часть снаряда влево, снаряд поднимет ее вверх. И такая борьба снаряда–гироскопа с силой сопротивления воздуха продолжается на протяжении всего полета. Головная часть снаряда перемещается то вправо, то вниз, то влево, то вверх, то есть описывает около траектории окружность, а ось снаряда образует коническую поверхность (рис. 159).
Рис. 160. Так на самом деле летит в воздухе вращающийся снаряд
В результате вращающийся снаряд летит все время головной частью вперед и в таком же положении падает на землю (рис. 160).