Для внешней картины наземного или надводного взрыва характерно наличие светящейся полусферы вместо шара.
Так же, как и Солнце, светящаяся область при атомном или термоядерном взрыве представляет собой газообразное раскаленное тело. Отличие будет состоять в том, что на Солнце ядерная реакция идет непрерывно, поэтому температура его поверхности остается все время постоянной (около 6000 градусов).
При атомном или термоядерном взрыве светящаяся область имеет переменный диаметр и температуру поверхности. Почти все вещества в области огненного шара полностью сгорают. Металлы плавятся или даже воспламеняются. Некоторые типы почв сплавляются, превращаясь в твердую стекловидную массу. За пределами огненного шара поражающее действие его светового излучения будет сказываться в обугливании и воспламенении некоторых материалов, в ожогах открытых частей тела человека.
Характер поражения — воспламенение, обугливание или ожоги — определяется тем количеством световой энергии, которое падает на один квадратный сантиметр поверхности освещаемого тела (перпендикулярной направлению распространения световых лучей) за все время излучения огненного шара. Это количество световой энергии называют световым импульсом.
Величина светового импульса зависит:
а) от количества световой энергии, излучаемой огненным шаром за все время его свечения. Так как на долю светового излучения приходится определенная часть (примерно одна треть) от всей энергии, выделяющейся при атомном взрыве, то, следовательно, величина светового импульса зависит от калибра бомбы;
б) расстояния освещаемой поверхности от центра взрыва;
в) состояния атмосферы в момент взрыва;
г) вида взрыва (наземный или воздушный).
Световой импульс обычно выражается в калориях на квадратный сантиметр (кал/см2).
Количество световой энергии, излучаемой за секунду с одного квадратного сантиметра светящейся поверхности, зависит от ее температуры. Интенсивность излучения, как известно, пропорциональна четвертой степени абсолютной температуры поверхности источника излучения. Такая зависимость означает, что, если температура увеличится вдвое, светимость возрастет в 16 раз, повышение температуры втрое вызовет рост светимости в 81 раз и т. д. Количество энергии, излучаемой каким-либо нагретым телом, прямо пропорционально площади его поверхности и времени свечения. Таким образом, чем больше размер светящейся сферы и длительнее излучение, тем больше выделяется световой энергии.
С увеличением расстояния от источника излучения величина светового импульса быстро уменьшается. Согласно известному физическому закону величина светового импульса обратно пропорциональна квадрату расстояния от источника световой энергии до освещаемой поверхности. Это значит, что при увеличении расстояния в два раза световой импульс уменьшается в четыре раза и т. д.
Например, по данным иностранной печати, при взрыве атомной бомбы с тротиловым эквивалентом 20 000 тонн на различных расстояниях от эпицентра взрыва, когда ослаблением светового излучения в атмосфере можно пренебречь, световые импульсы будут равны: на расстоянии одного километра — 56 кал/см2, двух — 14 кал/см2, трех — 6,2 кал/см2, четырех — 3,5 кал/см2 и пяти километров — 2,2 кал/см2. Для того чтобы определить значение световых импульсов для любого другого калибра бомбы на этих расстояниях, нужно указанные выше импульсы помножить на отношение тротилового эквивалента, выбранного к 20 000.
Таковы были бы импульсы, если бы световая энергия не ослаблялась в атмосфере. Однако практически при прохождении световой энергии сквозь атмосферу всегда происходит ее ослабление в той или иной степени. Рассмотрим этот вопрос подробнее.
Прежде всего установим, в каких областях спектра излучается наибольшее количество световой энергии при атомном взрыве. Это можно определить, если известна температура поверхности огненного шара в каждый момент времени. Тогда о взрыве атомной бомбы с тротиловым эквивалентом 20 000 тонн можно сказать следующее:
1) несмотря на то что в первые моменты после взрыва (первая стадия развития) температура поверхности огненного шара очень велика, доля излучаемой световой энергии за это время составляет примерно всего один процент. Это объясняется тем, что время сохранения такой большой температуры у огненного шара очень мало (тысячные доли секунды);
2) почти вся световая энергия при атомном взрыве излучается огненным шаром на последующей (второй) стадии его развития. При этом основная доля световой энергии (80–85 процентов) излучается за первую секунду после взрыва, а остальная часть (20–15 процентов) — в промежутке от 1 до 3 секунд (последняя стадия развития огненного шара);