Выбрать главу

from unittest.mock import MagicMock

instance = ProductionClass()

instance.method = MagicMock(return_value=3)

instance.method(3, 4, 5, key='value')

instance.method.assert_called_with(3, 4, 5, key='value')

Для того чтобы создавать mock-классы и объекты при тестировании, используйте декоратор patch. В следующем примере поиск во внешней системе заменяется mock-объектом, который всегда возвращает одинаковый результат (патч существует только во время работы теста):

import unittest.mock as mock

def mock_search(self):

····class MockSearchQuerySet(SearchQuerySet):

········def __iter__(self):

············return iter(["foo", "bar", "baz"])

····return MockSearchQuerySet()

# SearchForm относится к ссылке на импортированный класс

# myapp.SearchForm и модифицирует этот объект, но не код,

# где определяется сам класс SearchForm

@mock.patch('myapp.SearchForm.search', mock_search)

def test_new_watchlist_activities(self):

····# get_search_results выполняет поиск и итерирует по результату

····self.assertEqual(len(myapp.get_search_results(q="fish")), 3)

Вы можете сконфигурировать модуль mock и управлять его поведением разными способами. Они подробно описаны в документации к unittest.mock.

doctest

Модуль doctest выполняет поиск фрагментов текста, которые похожи на интерактивные сессии Python в строках документации, а затем выполняет эти сессии, чтобы убедиться, что они работают именно так, как было показано.

Модуль doctest служит другой цели, нежели юнит-тесты. Они обычно менее детальны и не отлавливают особые случаи или регрессионные ошибки. Вместо этого они выступают в качестве содержательной документации основных вариантов использования модуля и его компонентов (в качестве примера можно рассмотреть сценарий «счастливый путь» (happy path — https://en.wikipedia.org/wiki/Happy_path)). Однако такие тесты должны запускаться автоматически каждый раз, когда запускается весь набор тестов.

Рассмотрим простой пример doctest:

def square(x):

····"""Squares x.

····>>> square(2)

····4

····>>> square(-2)

····4

····"""

····return x * x if __name__ == '__main__':

····import doctest

····doctest.testmod()

Когда вы запускаете этот модуль из командной строки (например, с помощью команды python module.py), такие тесты начнут выполняться и «пожалуются», если какой-то компонент ведет себя не так, как описано в строках документации.

Примеры

В этом разделе мы рассмотрим фрагменты наших любимых пакетов для того, чтобы подчеркнуть правила хорошего тона при тестировании реального кода. Набор тестов предполагает наличие дополнительных библиотек, не включенных в эти пакеты (например, для Requests требуется Flask, чтобы создать mock-сервер HTTP), которые включены в файлы requirements.txt их проектов.

Для всех этих примеров ожидаемым первым шагом будет открытие терминальной оболочки, изменение каталогов таким образом, чтобы они указывали на то место, где лежат исходники к вашим проектам, а также клонирование репозитория исходного кода и настройка виртуальной среды. Например, так:

$ git clone https://github.com/username/projectname.git

$ cd projectname

$ virtualenv — p python3 venv

$ source venv/bin/activate

(venv)$ pip install — r requirements.txt

Пример: тестирование в Tablib

Tablib использует модуль unittest стандартной библиотеки Python. Набор тестов не поставляется с пакетом. Для получения файлов вы должны клонировать репозиторий GitHub. Приводим основные моменты, выделив главные части.

Для того чтобы использовать юнит-тест, создайте подкласс unittest.TestCase и напишите методы для тестирования, чьи имена начинаются с test. Класс TestCase предоставляет методы с выражением, которые позволяют выполнить проверку на равенство, правдивость, тип данных и наличие исключений (см. документацию по адресу http://bit.ly/unittest-testcase для получения более подробной информации).

Метод TestCase.setUp() запускается всякий раз перед каждым методом TestCase.