Выбрать главу

Нужно сказать, что, по мнению самого Джекобсона, на основании проведенных им экспериментов пока еще рано делать какие-то обобщения и выводы относительно "РНК-гипотезы". "Все еще остаются нерешенными, — пишет ученый, — некоторые фундаментальные проблемы. В чем состоит действительная природа явления переноса поведения и можно ли отнести его к запоминанию, что вызывает это явление — уверены ли мы, что это РНК и только РНК? Неясно и многое другое... Проблемы запоминания и памяти сегодня не стали проще, чем когда-либо; действительно, может показаться, что новый биохимический подход поставил больше вопросов, чем дал ответов..."

И все же, несмотря на высказываемые многими учеными возражения и сомнения по поводу "РНК-гипотезы", безусловно, следует положительно оценить общую тенденцию к поискам связи между физиологией высшей нервной деятельности и молекулярной биологией. Разработка правильной в целом идеи об участии РНК и белкового синтеза в явлениях долговременной памяти, безусловно, перспективна. По всем данным РНК принадлежит немаловажная роль в механизме памяти. Это вещество очень близко к дезоксирибонуклеиновой кислоте (ДНК), являющейся, как известно, носителем информации наследственности, зашифрованной в химическом виде фактически во всех живых организмах. Если генетическая информация может передаваться веществом ДНК, то вполне резонно предположить, что вещество РНК может быть носителем информации другого типа...

Пока никто не в состоянии дать исчерпывающий ответ на все вопросы, связанные с деятельностью мозга: о механизме памяти, об удивительной системе произвольного доступа к огромным запасам информации, хранящейся в мозгу, о гибкости и надежности памяти человека. Но великий русский физиолог И. М. Сеченов, очень хорошо понимавший титаническую трудность проблемы, утверждал, что предпосылки для понимания функции мозга состоят в "...строгом разборе его машинности". Успехи кибернетики и бионики — лучшее доказательство справедливости этого тезиса. Новым наукам, развиваемым совместными усилиями физиологов, математиков и специалистов по электронике, союз которых оказался чрезвычайно плодотворным, по плечу любая задача. Рано или поздно ученые смогут выведать у мозга самые сокровенные его тайны.

Значительная и даже, пожалуй, основная часть ведущихся ныне исследовательских работ по бионике посвящена созданию аналогов биологического нейрона — нервной клетки, являющейся основным элементом нервной системы. Конечная цель этих работ — создание систем, предназначенных для накопления, обработки и передачи большого количества информации, электронных машин, способных решать любые сложные задачи без предварительного программирования, различных самообучающихся, адаптивных (самоприспосабливающихся), самонастраивающихся, самоорганизующихся устройств, обладающих малыми габаритами и высокой надежностью. Иными словами, речь идет о создании широкого комплекса автоматических систем, функционирующих по принципу, аналогичному законам деятельности и принципам организации живого мозга.

Нервная система человека и животных содержит нейроны различных типов, при помощи которых мозг воспринимает, обрабатывает, накапливает и передает информацию, регулирующую работу биологической системы в соответствии с изменением внешних условий, т. е. так, чтобы обеспечить ее наибольшую адаптацию к окружающей среде. В основном нейроны делятся на три класса: чувствительные (сенсорные), или рецепторные, которые воспринимают и передают свет, тепло, давление и другие воздействия внешней среды; двигательные (моторные), или эффекторные, контролирующие сокращение мышц; вставочные (ассоциативные), или про-межуточные, которые связывают между собой специализированные типы и комплектуют мозг. Нейроны этих трех классов можно рассматривать как входные устройства, выходные устройства и все, что находится между ними. Помимо различий в величине и форме, у нейронов встречаются и необычные структуры, наиболее заметные у некоторых рецепторных нейронов; окончания этих нейронов снабжены разнообразными приспособлениями (физик назвал бы их преобразователями), с помощью которых давление, химический состав, температура или иные физические величины, воспринимаемые нейронами, могут преобразовываться в особые электрохимические сигналы.