Выбрать главу

"Генетическая память — память наших генов — определяется, по существу, комплексами нуклеиновых кислот. На протяжении последнего года появились основания думать, что память нервной системы имеет такую же природу. На это указывает открытие в мозгу комплексов нуклеиновых кислот, обладающих свойствами, которые в принципе могли бы быть хорошей основой памяти. Я полагаю — и я не одинок, — что примерно в следующем десятилетии подобные принципы будут использованы в технике.

...Будут вещества, сходные с генами. Это потребует новых фундаментальных исследований. Как осуществить ввод и вывод информации для генетической памяти, как использовать эту память в машине — решение таких задач связано с обширными исследованиями, которые сейчас еще только-только начаты. Некоторые из нас полагают (это еще не проверено), что ввод и вывод информации можно осуществить, используя молекулярные спектры испускания и поглощения комплексов нуклеиновых кислот. Сбудется ли это, я не возьмусь утверждать. Но саму идею некоторые из нас рассматривают серьезно".

Далее на вопрос: "Какова будет производительность такой машины (в блоках памяти которой предполагают использовать гены. — И. Л.) по сравнению с современными вычислительными машинами?" — Винер ответил:

"Во много раз больше, а размеры ее будут гораздо меньше ныне существующих. Она сможет перерабатывать гораздо больший объем информации".

Не все ученые согласны с предсказаниями С. А. Соболева, Н. Винера и др., что в будущем дело дойдет до построения белковых машин. Как бы то ни было, эти перспективы весьма далекие.

Но если заглянуть несколько ближе, то вполне реальным может стать создание вычислительных машин на базе так называемой "ростовой" (непрерывной) технологии, широко применяемой в "радиоэлектронном производстве" живой природы.

Хорошо известно, что мозг строится и развивается в результате естественного роста. Выращивать искусственные нейроны мы пока еще не научились, но принципиально это вполне осуществимо при условии познания механизмов роста живой материи. Во всяком случае, специалисты по бионике, по электронным устройствами, по кристаллографии, по физике твердого тела и другие ученые проявляют большой интерес к "ростовой" технологии, идеально отработанной живой природой. В ряде стран сейчас ведутся интенсивные бионические исследования в этой области. Поскольку вся полупроводниковая техника — это кристаллическая техника, ученые особенно большие надежды возлагают на создание электронных вычислительных машин посредством выращивания кристаллов. И нужно сказать, что надежды эти уже начинают оправдываться.

"Известно, — пишет А. М. Эндрю в своей книге "Мозг и вычислительная машина", — что при прохождении электрического тока через раствор железного купороса на дне сосуда образуются железные нити. Гордону Паску удалось вырастить довольно разветвленную систему нитей в сосудах с большим числом электродов. Информация в виде электрических сигналов поступает в систему железных нитей через электроды. Здесь же имеются и другие считывающие электроды, которые получают сигналы из системы. Паск рассмотрел ряд способов, которыми можно создать систему, самоорганизующуюся для достижения некоторой цели. Простейшие компоненты, из которых в перспективе будут состоять вычислительные машины, возможно, смогут саморазмножаться подобно железным нитям, полученным Паском. Дальнейшие исследования головного мозга покажут, как должна функционировать вычислительная машина, состоящая из таких элементов".

Итак, мы стоим перед новыми революционными преобразованиями в электронной технологии. Не нужно быть фантастом, чтобы представить себе, как в будущем методами заимствованной у природы непрерывной "ростовой" технологии инженеры получат возможность выращивать в особой среде не только отдельные элементы, узлы и блоки электронных устройств, но и целые вычислительные машины. Архаизмом станут процессы монтажа и настройки радиоэлектронной аппаратуры. "Ростовая" технология избавит вычислительную технику от ее злейших врагов — контактов и соединений с помощью пайки, позволит наконец полностью решить головоломную проблему века — проблему высокой надежности электронной техники. Сказочно — другое слово трудно подобрать — повысится уровень "мышления" вычислительных машин. Если в 1 см3 самых умных электронных "мозгов" сейчас сосредоточено 2250 различных деталей, то в будущем плотность упаковки элементов в вычислительных системах приблизится к плотности нейронов в мозгу (225 миллионов в 1 см3). Иными словами, грядущие электронные помощники и "соперники" человеческого мозга станут в 100 000 раз "умнее" своих предшественников. Резко возрастет и быстродействие вычислительных машин. Нынешние "молниеносные" вычислительные системы, которыми мы так восхищаемся, — страшные тугодумы. Даже самая быстродействующая машина — "сверхмозг" не делает больше 100 миллионов операций в секунду. Вычислительные же системы, созданные методами выращивания, будут, по мнению ученых, работать на сверхкоротких импульсах, т. е. будут производить миллиарды и даже тысячи миллиардов операций в секунду!