Выбрать главу

Рис. 17. Механизмы сцепления крыльев у пчел (а) и у тлей (6, в, г)

Рассмотрим теперь устройство крыла насекомого. На первый взгляд твердое, сухое крыло мухи или бабочки кажется безжизненным образованием. Но в действительности это далеко не так. В него входят нервы, внутри крыла имеется даже (правда, не у всех насекомых) кровообращение. Крыло насекомого — это изумительное "инженерное" творение природы, достойное восхищения техников. Оно разделяется на две механически различные компоненты: жилки и мембрану. Жилки, будучи построены по типу полых трубок, представляют собой чрезвычайно прочные образования. Но площадь, занимаемая ими в крыле, весьма незначительна, так как они очень тонки. Промежутки между жилками, ячейки, затянуты тонкой прозрачной мембраной. Последняя занимает большую часть площади крыла и очень гибка. Однако, будучи разделена на ячейки, натянутые на прочный каркас жилок, она приобретает значительную прочность. В общем, совокупность жилок и мембраны напоминает распущенный зонт с материей, натянутой на стальные прутья. Такое строение обеспечивает обширную гребную поверхность крыла при минимальной затрате материала и минимальном весе. Работа крыла характеризуется частотой взмахов. У насекомых же частота ритмических ударов крыльями очень велика. Ночные бабочки делают от 35 до 45 взмахов в секунду, стрекоза коромысло — от 80 до 100, оса — ПО, шмель — от 180 до 240, комнатная муха — 330, медоносные пчелы-от 180 до 340, комары — около 600 взмахов в секунду. Комары толкунчики, рои которых часто вьются столбом, предвещая хорошую погоду, делают 800 взмахов в секунду, а комары дергуны и комары мокрецы — даже до 1000 взмахов в секунду! Такой высокий ритм работы крыльев (а он присущ большинству хорошо летающих форм) убедительно говорит о колоссальной прочности крыльев. Крыло насекомого "оснащено" большим количеством разнообразнейших микроскопических органов чувств. Крохотные колбочки, щетинки, волоски, различаемые лишь при многократном увеличении под микроскопом, сложные устройства, называемые хордотональными сенсиллами, — вся эта удивительная аппаратура помогает насекомому отлично ориентироваться в пространстве. Одни органы регистрируют скорость встречного потока воздуха, другие выполняют осязательную функцию, третьи регистрируют крутящие моменты в разных направлениях. Остается только пожелать, чтобы самолеты будущего располагали комплексом столь точных, малогабаритных и высоконадежных в работе приборов!

Характер полета насекомых чрезвычайно разнообразен. Некоторые виды могут парашютировать. Такой полет наблюдается при роении поденок; при этом насекомое, взлетев вертикально на 1 — 2 м вверх и остановив крылья в несколько приподнятом положении, медленно падает вниз. В замедлении спуска, кроме крыльев, большую роль играют длинные хвостовые нити. Вследствие сопротивления воздуха они раздвигаются, загибаются концами вверх и тянут за собой и конец брюшка. Когда насекомое снова начинает работать крыльями, набирая высоту, хвостовые нити сближаются, их концы загибаются вниз и брюшко опускается. Таким образом, это настоящий парашютный спуск, но здесь парашютируют не только плоскости крыльев, но и хвостовые нити. Крупным формам свойствен планирующий полет: насекомое "выключает мотор" и в течение некоторого времени движется вперед — планирует. Например, крупная бабочка перламутреница планирует в течение 20 сек со скоростью 1 — 3 м/сек, а крупная стрекоза, используя на высоте 3 — 4 м токи воздуха, восходящие от нагретой почвы и растительности, может планировать до 4 — 5 мин. Но поскольку планирующий полет требует большой абсолютной величины крыла, он не получил большого развития у насекомых.

Основной формой полета насекомых является гребной полет, т. е. полет в результате непрерывных ритмических взмахов крыльями. Познакомимся теперь с механизмом гребного полета, с аэродинамическим эффектом движения крыла на двух схемах Маньяна (рис. 18). На первой схеме (А) показана стадия опускания крыла, на второй (Б) — стадия его подъема.

В полете крыло насекомого работает то верхней, то нижней поверхностью, поворачиваясь вокруг продольной оси насекомого. Когда крыло переходит из положения I в положение IV, оно бьет сверху вниз своей нижней поверхностью (положения II и III показывают это особенно ясно). Возникает подъемный эффект, в результате которого тело насекомого поднимается вверх. При переходе из положения IV в V крыло поворачивается вокруг продольной оси и, пройдя через вертикальное положение, переходит в наклонное — нижним краем вперед. После этого начинается обратное движение крыла, т. е. его подъем вверх, изображенный на схеме (Б). Нетрудно увидеть, что, переходя из положения VI в VII и VIII, крыло, словно весло, ударяет спереди назад. Вследствие этого тело насекомого получает толчок вперед. Дойдя до крайней верхней и задней точки, крыло снова поворачивается около своей продольной оси, затем принимает горизонтальное положение, и цикл повторяется вновь. Первую часть траектории крыла называют подъемной, или элеваторной, вторую — пропеллирующёй. За полный цикл вершина крыла описывает по отношению к телу насекомого восьмеркообразную кривую, наклоненную верхним концом назад, или лемнискату, которая при движении растягивается в кривую, напоминающую синусоиду (рис. 19). Благодаря большой частоте взмахов элеваторный эффект аэродинамически сливается с пропеллирующим, и насекомое движется вверх и вперед. Таким образом, согласно теории Марея — Бюлля — Маньяна, принцип работы крыла насекомого столь же прост, сколь и совершенен.