Выбрать главу

Если считать, что в программу исследований в области предсказания землетрясений должно входить изучение всех физических параметров, реагирующих на изменения напряжений, физико-химических свойств пород или на характер деформации, то потребуется еще целый ряд наблюдений.

Землетрясению всегда предшествует накопление энергии в веществе очага. Она может накапливаться, как указывает академик М. Садовский, за счет медленных, длящихся десятки, сотни, а может быть, и тысячи лет, течений вещества недр, в результате которых в нем возникают напряжения, подобные напряжениям в пружине. Накопление энергии идет до тех пор, пока не будет превышен порог прочности вещества. Когда это случается, вещество, грубо говоря, лопается, и в окружающей очаг среде начинают распространяться сейсмические волны — происходит землетрясение. Напряжения могут возникнуть и от неравномерного разогрева вещества внутренним теплом Земли (вспомним, как лопается стекло при неравномерном нагреве). Напряжения могут возникнуть также при переходе части вещества недр из одного состояния в другое (полиморфные переходы) и т. д. и т. п. В общем, каков бы ни был механизм возникновения землетрясения, его могут предвещать изменения наклона поверхности и напряжения в районе эпицентра, общее увеличение числа малых сейсмических явлений, изменения физических свойств пород близ сброса. Чувствительны к очень незначительным напряжениям сжатия и растяжения (порядка 10 — 9 — 10 — 8) уровни грунтовых вод. В частности, после большого землетрясения на Аляске в 1964 г. в юго-восточной части США наблюдалось изменение уровня воды в колодцах. Кроме того, в ответ на изменения магнитной восприимчивости или электропроводности может измениться геомагнитное поле; оно изменяется также в случае смещения точки Кюри. Еще более чувствительными индикаторами могут служить почвенные токи (естественные или искусственные); поскольку они прямо реагируют на изменение удельного сопротивления, это изменение в свою очередь может свидетельствовать об увеличении напряжений.

Из сказанного, по-видимому, ясно, что для прогнозирования землетрясений необходимо организовать с максимально возможной точностью регистрацию всех возможных признаков, предвещающих землетрясения. Однако землетрясения принадлежат к явлениям случайным. Поэтому для обеспечения максимальной вероятности того, что большинство землетрясений удастся "уловить", очевидно, необходимо установить в сейсмически опасных зонах сеть приборов, которые бы действовали непрерывно в течение длительных периодов времени, и вести за ними систематическое наблюдение. Но если вспомнить, что только в одной нашей стране 20% территории сейсмически опасны, то становится понятным, насколько это дорого и трудно. И хотя на первый взгляд такой подход к решению проблемы прогнозирования землетрясений может показаться эмпирическим и несколько расточительным (ввиду отсутствия проверенной теории механизма возникновения землетрясений), все же он вполне себя оправдывает, если учесть тот колоссальный, ни с чем не сравнимый вред, который приносят землетрясения человечеству.

В Советском Союзе работы по прогнозированию землетрясений были начаты еще в 1950 г., вскоре после ашхабадской катастрофы. Тогда под руководством покойного академика Г. А. Гамбурцева была разработана программа широких геофизических поисков предвестников землетрясений. Однако нехватка знаний о природе землетрясений и несовершенство технического оснащения воспрепятствовали должному развитию работ. Сейчас положение существенно изменилось. На территории Ташкента сейсмоприемники, опущенные в специально пробуренные скважины, достигли глубин в 500 м. Это позволяет следить за микроземлетрясениями, которые на поверхности фиксировать нельзя — мешает шум города. В некоторые скважины опущены микрофоны, с помощью которых ведется запись подземных гулов. Высокочувствительные приборы регистрируют медленные наклоны земной поверхности. Они позволяют отмечать даже влияние лунно-солнечного притяжения на поверхность Земли. Проводятся наблюдения за электрическими явлениями в атмосфере и т. д. и т. п.