В месте соединения имеется типичный химический синапс. Он состоит из двух мембран, пресинаптической и постсинаптической, и зазора между ними. Когда электрический потенциал действия доходит до синапса, он вызывает выделение медиатора (в рецепторных нейронах это глютаминовая кислота) через пресинаптическую мембрану в синаптическую щель. Воздействуя на постсинаптическую мембрану, глютаминовая кислота вызывает, в зависимости от типа синапса, либо возбуждение, либо торможение клетки адресата.
Углубляться в подробный разбор синапсов не стоит, потому что у них великое множество подвидов, и, если все это разбирать досконально, выйдет пять толстых томов. Единственное, что хотелось бы добавить, — запоминание информации и обучение нейронных сетей происходит именно на синапсах. Его свойства обуславливает реакцию клетки адресата на сигнал, пришедший от клетки отправителя, и характер создаваемого синапса приводит к обучению системы.
Рецепторные нейроны не имеют полноценных аксонов и не умеют генерировать импульсы. При увеличении уровня освещенности они постепенно повышают потенциал, и-за чего происходит рост выделения медиатора на синапсе, пока тот не сработает. При этом на постсинаптической мембране биполярного нейрона потенциал нарастает скачкообразно, формируя полноценный электрический потенциал действия. Таким образом, рецепторный нейрон все еще работает в непрерывном аналоговом режиме, но синапс между ним и биполярным нейроном уже является устройством, преобразующим непрерывность в дискретность.
Несмотря на бесконечную точность, аналоговый сигнал крайне неудобен для передачи сообщений. Во-первых, любой сигнал затухает и расплывается с расстоянием, а также подвержен влиянию различных физических факторов. Бесконечная точность амплитуды аналогового сигнала становится бесконечно бессмысленной, если мы получили сигнал, ослабленный приблизительно в два или три раза. Во-вторых, совершенно убийственным фактором для аналогового сигнала являются шумы. И, в-третьих, на очень малых расстояниях нам начинает слать «приветы» квантовая механика в виде неопределенности положения, измеряемого в пространстве.
Ощутив аналоговый сигнал, пришедший снаружи, рецепторный нейрон не может просто отослать его, как есть, в мозг; с сигналом надо что-то сделать, чтобы сообщение не потерялось в шуме и дошло в целости и сохранности до получателя. Чтобы справиться с проблемой шума и ослабления сигнала с расстоянием, нервные клетки работают по принципу все или ничего. Есть некоторый порог внешнего воздействия (стимула), ниже которого велика вероятность перепутать это воздействие с шумом. На стимулы слабее этого порога нервные клетки попросту не реагируют, а если тот, наоборот, превышен, нервная клетка начинает генерировать электрические сигналы (нервные импульсы) одинаковой величины. Чем больше стимул, тем чаще возникают сигналы.
Единичный нервный импульс не несет информации о силе стимула, но зато он как раз такой величины, чтобы его можно было надежно выделить из шума, и не настолько велик, чтобы нас било электрическим током. Но несколько импульсов, пришедших один за другим, вполне могут нам рассказать о силе первичного стимула. Есть некоторый фон по 7–8 импульсов в секунду, означающий, что нейрон на той стороне в принципе жив. Если сигналы идут редко, по 15–20 в секунду, значит стимул был слабый. Но если импульсы барабанят по 150–200 в секунду, значит, стимул сильный, и глаз надо прикрыть, чтобы не ослепнуть.
Матчасть номер два (физиология зрительных путей)
Зрительные нервы обоих глаз перекрещиваются в хиазме и входят в промежуточный мозг на границе таламуса и гипоталамуса. Ради бога, не пугайтесь, я сейчас все объясню.
В сетчатке имеется около миллиона ганглиарных клеток, каждая из которых выпускает один аксон, соответственно, зрительный нерв содержит около миллиона проводков. Получается, миллион пикселей или мегапиксель — это среднее разрешение матрицы нашей сетчатки, но на деле острота зрения гораздо выше, потому что расположен этот мегапиксель очень неоднородно.