Выбрать главу

А пока в экономическую жизнь медленно, но все настойчивее проникают из математики на первый взгляд совершенно абстрактные понятия, без которых, как потом выясняется, невозможно работать.

Одним из таких понятий, несомненно, является «экстремум» и связанное с ним понятие «экстремальная задача».

«Мы действительно живем в эпоху прикладных наук», — не без удивления вынужден был констатировать А. Эйнштейн. Казалось бы, какое прикладное значение может иметь такое чисто математическое определение: «…точки, в которых функция принимает минимальное или максимальное значение, называются точками экстремума, или экстремальными точками»? Оказывается, может иметь! И даже большое!

В математике функцией называется зависимость между величинами. В экономике тоже. Производительность труда рабочего зависит от вооруженности его техникой. Если землекопу дать лопату, у него будет одна производительность труда, если его посадить на экскаватор — другая. Техническая вооруженность рабочего, в свою очередь, зависит от затрат на приобретение техники — экскаватор стоит дороже лопаты. Таким образом, производительность труда зависит от затрат на вооружение рабочего техникой, или, как говорят экономисты, от фондовооруженности.

Представьте, читатель, что вы управляете некоторым землеройным предприятием и стремитесь увеличить его прибыль, то есть увеличить разницу между доходом и затратами на производство. Понятно, что прибыль зависит от фондовооруженности землекопов вашего предприятия. Математик бы сказал, что прибыль есть функция от фондовооруженности. Но как она зависит? На первый взгляд кажется довольно просто: чем больше фондовооруженность, тем больше прибыль. Поскольку принято функции — зависимости изображать в виде наглядных графиков, то такая зависимость упрощенно выглядит как прямая линия и в математике называется линейной.

Однако внимательный анализ зависимости показывает, что такой график неправильно отражает положение дел. Действительно, из него следует, что если фондовооруженность рабочих составляет 2 тысячи рублей, то прибыль будет в 2 раза больше, чем при фондовооруженности, равной тысяче рублей. Возможно, что такая зависимость где-то и существует, но не в вашем условном землеройном случае. У вас рабочему можно дать либо лопату, либо малую землеройную машину, либо большой экскаватор. Естественно, что в промежутке между этими случаями увеличение затрат на фондовооруженность к значительному увеличению прибыли не приводит. Более правильным будет эту зависимость изображать некоторой кривой, а не прямой линией, и поэтому называется она нелинейной.

Кстати, на первый взгляд несколько странным кажется деление функций на линейные и нелинейные. Что вызвало выделение прямой линии из многообразия всех кривых? Ответ прост: если зависимость линейная, то очень просто решать всевозможные задачи. В этом случае решение получается автоматически: чем больше, тем лучше, если прямая линия идет слева вверх направо в системе координат, и, наоборот, чем меньше, тем лучше, если линия идет слева вниз направо.

Из приведенного случая следует: чем больше фондовооруженность, тем больше прибыль; значит, отпускай побольше денег на оборудование, и прибыль будет расти неограниченно высоко?! Однако если рабочему дать два экскаватора, его производительность труда ведь не увеличится! Работать-то он может лишь на одном! А в то же время затраты на производство вырастут. Это значит, что, начиная с некоторого момента, увеличение фондовооруженности ведет к снижению прибыли, как это показано на первом рисунке. Заметим, что это справедливо лишь для конкретного случая с данным экскаватором. Может быть, в недалеком будущем будет изобретена новая землеройная машина невиданной производительности, и ее приобретение даст новый скачок прибыли. А пока увеличение фондовооруженности после некоторой точки нецелесообразно. Точка эта, в которой зависимость прибыли (ПР) от фондовооруженности (ФВ) принимает свое максимальное значение, называется точкой экстремума исследуемой функции. На рисунке она обозначена буквой Э.