Выбрать главу

Из такого календарного плана видно, что длительность изготовления всего комплекта деталей — семь часов, а не четыре, как следует из балансовых методов планирования, и что при изготовлении комплекта каждый станок простаивает по три часа.

Однако при составлении плана вставал вопрос: почему запускалась в обработку сначала первая деталь, а затем вторая? Что, первая имеет какие-нибудь преимущества перед второй?

Оказывается, нет, такой порядок — дело простого случая. А поскольку никаких объективных причин для такого порядка обработки нет, то стоит рассмотреть и другой вариант, когда сначала обрабатывается деталь № 2. Он представлен на таблице 3 и показывает, что время изготовления комплекта деталей при такой последовательности сократилось до шести часов, а простои станков до двух часов. Может быть, существует третий, более выгодный порядок обработки? Нет, поскольку других вариантов запуска не имеется, следовательно, это неизбежные простои.

Табл. 3.

Можно обижаться на подобное планирование и заявлять: «Что же это за такой прогрессивный метод планирования, при котором из шести рабочих часов станки стоят по два часа, при этом еще утверждается, что простои эти неизбежны?» На это можно возразить: «Если вам подают кофе, не старайтесь найти в нем пива. И наоборот».

Наличие простоев не зависит от метода планирования. При данной производственной программе на данном участке лучше не спланируешь. А менять производственную программу в задачи метода не входит. Этим должен заниматься человек, плановик. Рассмотрев полученный календарный план, он может решить, что простой станков неоправданно велики и следует на данный участок направить другие детали, которые лучше соответствуют производственным возможностям участка.

Вообще существует неверное представление, что методы оптимизации являются панацеей от всех бед. Это не так. Плохую организацию производства оптимальным планированием не изменишь. Оптимальное планирование может лишь заранее показать все дефекты организации производства и свести их влияние к минимуму. А это немало! Ведь без этих методов все недостатки всплыли бы в процессе выполнения плана, когда исправлять их уже поздно!

Методы оптимального планирования, вооружая плановика мощным орудием предвидения, фактически позволяют заранее обнаружить изъяны в организации производственного процесса и тем самым дают возможность принять действенные меры по их ликвидации.

В данном случае выбор между традиционными методами объемного или методами оптимального календарного планирования, конечно, решается в пользу вторых. В то время как объемный метод говорит, что вся работа будет выполнена за 4 часа (что неверно!), календарный не только показывает, что длительность будет больше и что неизбежны простои, но и указывает такой вариант запуска деталей, при котором общая длительность и простои будут минимальны.

Таким образом, ясно, что задача планирования работы участка хотя и микрозадача, но многовариантна. Принципиально она определяется различными последовательностями запуска деталей в производство. Для двух деталей это две последовательности (1; 2) — сначала деталь № 1, затем № 2 либо (2; 1), сначала деталь № 2, затем № 1. Для трех деталей последовательностей запуска уже будет больше: 123; 132; 213; 231; 312; 321.

Вообще всего порядков запуска будет ровно столько, сколько различных перестановок можно составить из номеров деталей. К примеру, из 10 деталей можно составить свыше трех с половиной миллионов различных перестановок, точнее:

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 = 3 628 800 штук.

Если тратить всего по 10 минут на составление календарного плана, соответствующего каждой из этих перестановок, то придется затратить около 70 лет. Даже ЭВМ, «считающая» по 200 вариантов плана в секунду, должна будет работать более пяти часов.

А если деталей на участке не 10, а 100? Число вариантов плана в этом случае огромно: оно получится от перемножения всех чисел от 1 до 100.

(1 · 2 · 3 · 4 · 5 … 98 · 99 · 100).

Чтобы не писать такое длинное произведение, в комбинаторике принято обозначение 10!; 100! и читается «десять факториал», «сто факториал». Полученное число во много-много раз больше всех известных чисел-гигантов, и, конечно же, составить такое количество вариантов плана невозможно. Для чего же тогда вводится понятие многовариантности решения экономической задачи? Не для того ли, чтобы убедиться, что решить ее невозможно?