Выбрать главу

Однако на одну и ту же натуру каждый художник смотрит по-своему. Один и тот же пейзаж воплощается в совершенно разные картины. Трудно было ожидать, что и ядро всем физикам представится в одном и том же свете. Несмотря на то, что первая «карикатура» на него многими была признана изумительно точной, кое-кто думал иначе.

Уже через 2 года после возникновения идеи о ядре-капле американский физик Бартлетт предложил свой оригинальный набросок, свое видение ядра. К сожалению, это было сделано не вовремя. Успех, выпавший на долю капельной модели в объяснении альфа-распада и реакции деления ядер урана, сделал всех просто неспособными обратить серьезное внимание на предложенную новую картинку.

Возможно, восприятию ее мешало одно существенное обстоятельство. В новой модели нейтроны и протоны размещались в ядре не равномерно, а, наоборот, в каком-то определенном порядке — группировались по особым оболочкам.

Подобное построение ядра казалось чрезвычайно искусственным и не соответствующим действительности, а модели Бартлетта, которая была названа оболочечной, не удалось завоевать сердца физиков ни через год, ни через два; они были отданы другой…

В течение 16 лет «карикатура» Бартлетта считалась злым шаржем и покрывалась пылью на полках «запасника». Но со временем все чаще и чаще на нее приходили взглянуть… экспериментаторы.

Дело в том, что от случая к случаю они получали такие результаты, которые могли охладить пыл самых ревностных почитателей модели жидкой капли.

Опустив в карман пять монеток по десять копеек, каждый может утверждать, что у него есть полтинник. Следуя этой привычной логике, естественно было ожидать, что и магнитные, и механические моменты количества движения всех ядерных нуклонов тоже складываются. Но вычисления приводили к несуразностям. Измеренные на опыте магнитный и механический моменты количества движения атомных ядер не имели ничего общего с предполагаемыми значениями.

Ученые искренне считали, что простое сложение моментов нуклонов согласуется с моделью жидкой капли, а оказалось, что вопрос о величине механического и магнитного моментов ядра невозможно решить, используя эту модель. Вот тогда-то бартлеттовская «карикатура» на ядро и показалась физикам уже гораздо симпатичнее, чем раньше. Они подумали: что, если затруднения в определении величин магнитных и механических моментов ядер связаны с тем, что протоны и нейтроны не теряют в ядре свою индивидуальность, и, следовательно, имеет смысл говорить о состоянии отдельного нуклона? Возможно, ядро имеет и внутреннюю структуру, благодаря которой магнитные и механические моменты нуклонов оказываются определенным образом ориентированными относительно друг друга!

В начале 50-х годов накопилось столько несогласующихся с капельной моделью экспериментальных фактов, что к этому времени она всем стала казаться далеко не всемогущей. Обнаружили, что ядра, содержащие 2, 8, 20, 28, 50, 82 и 126 протонов или нейтронов (эти числа прозвали в шутку «магическими»), обладают особыми свойствами. Они, эти ядра, отличаются особой устойчивостью по сравнению с другими. Но рекордсменами устойчивости являются владельцы дважды магических чисел нуклонов. Например, изотопы гелия-4 (два нейтрона и два протона), кислорода-8 (восемь протонов и восемь нейтронов), свинца-82 (82 протона и 126 нейтронов) и некоторые другие. Элементы, ядра которых содержали магические числа нуклонов, оказались распространенными в солнечной системе.

Но самым примечательным было подмеченное учеными периодическое изменение и повторение некоторых свойств у тех ядер, которые имели число нуклонов, близкое к магическому. Тут уж сама собой напрашивалась аналогия между внутренним устройством ядра и строением самого атома.

Повторение химических свойств элементов в периодической системе связано с периодическим заполнением электронами все новых и новых оболочек. И атомы с заполненными оболочками наиболее устойчивы в химическом отношении (например, инертные газы). А что, если и магические числа нуклонов соответствуют количеству мест в нуклонных оболочках ядер?

Недолго думая, физики торжественно вытащили на свет божий оболочечную модель и немало подивились тому, что очевидное ее сходство с оригиналом не вызывает никаких сомнений, а теоретики немедля принялись развивать, подчищать и уточнять основные детали этой идеи оболочечного строения ядра. За обоснование и глубокую разработку нового взгляда на ядро немецкие физики М. Гепперт-Майер и И. Йенсен и были удостоены в 1963 году Нобелевской премии по физике.