Один гиперон в ядре не подчиняется принципу запрета Паули, как и одна квантовая пуля в броне или один мю-мезон в ядре. «Это колоссальное преимущество для проверки наших представлений о структуре ядра», — сказал профессор Е. Пневский.
Ученые считают, что наиболее перспективны именно те исследования, в которых изучаются ядра, находящиеся в условиях, отличающихся от стандартных. Сравнение таких свойств гиперядер, как время жизни, возможные квантовые состояния и другие, с такими же свойствами обычных ядер даст богатую информацию и о ядерных силах, и о новых сторонах в строении ядра.
Но физика гиперядер не могла развиваться до тех пор, пока в качестве основного источника гиперонов использовались космические лучи. Слишком редки были случаи рождения гиперядер. Сейчас их создают на мощных ускорителях протонов в пучках отрицательно заряженных К-мезонов. В реакции, которую в 1963 году предложил для получения гиперядер советский ученый профессор М. Подгорецкий, тяжелый К-мезон, сталкиваясь с ядром мишени, захватывается одним из его нейтронов. При этом рождается нейтральный лямбда-гиперон, который приживается в ядре, и пи-мезон. Эта ядерная реакция в основном и штампует гиперядра по сей день.
Известно уже около двадцати таких необычных ядер. Но в результате систематических исследований, к которым приступили ученые во многих известных лабораториях, наверняка будут открыты новые группы подобных ядер с совершенно новыми свойствами.
А пока о гиперядерной физике приходится говорить, оперируя в основном глаголами будущего времени. Это одна из быстро развивающихся, интереснейших областей науки микромира, у которой, правда, гораздо больше потенциальных возможностей, нежели реальных достижений. И все же экспериментаторы уже обнаружили несколько гиперядер, которые содержат не один нейтральный лямбда-гиперон, а целых два. Но и это не предел. Теоретики предсказывают, что на вновь строящихся ускорителях, так называемых нуклотронах, разгоняющих до высоких энергий атомные ядра, можно будет получать экзотические ядра с еще большим числом гиперонов. Такие сверхстранные ядра должны быть более плотными, поскольку при добавлении к ним лямбда-гиперонов их радиусы тем не менее не увеличиваются. Исследование такого необычного ядерного вещества интересно и само по себе, и с точки зрения астрофизики.
Советские астрономы В. Амбарцумян и Т. Саакян еще в 1960 году выдвинули гипотезу о существовании особой формы звездного вещества — вещества, содержащего, кроме нуклонов, еще и гипероны.
Возможно, настанет время, когда гиперонная физика позволит ученым «хватать с неба звезды» и изучать их в лаборатории. Экзотические ядра, содержащие несколько гиперонов, могут служить микроскопической, короткоживущей «пробой» звездного вещества.
Ядра во вселенной и у нас дома
— Выходит, что ядерное вещество можно нафаршировать разными частицами? А как в микромире обстоит дело с рационализацией? Если между протонами и нейтронами действуют одинаковые ядерные силы, то не существует ли ядер, построенных, например, из одних нейтронов?
— Природа — гениальный рационализатор. И когда в этом возникает необходимость, она действительно создает нейтронное вещество.
Шестого августа 1967 года молодая ассистентка профессора Э. Хьюиша, наблюдая с помощью радиотелескопа за созвездием Лисички, зарегистрировала необычный сигнал: на ленте, выползающей из-под скоростного самописца, были четко видны с удивительной строгостью повторяющиеся во времени всплески. Это знаменательное событие произошло в Кавендишской лаборатории Кембриджского университета; в той самой лаборатории, где Дж. Дж. Томсон впервые доказал делимость атома, обнаружив элементарную частицу — электрон; лаборатории, тесно связанной с именем Э. Резерфорда.
Никто и никогда раньше не принимал из космоса столь странных сигналов. Они до жути походили на тысячу раз описываемые писателями-фантастами позывные внеземных цивилизаций. Казалось бы, астрономы должны были поскорее оповестить весь мир о своем открытии и попытаться расшифровать закодированную в таинственных импульсах информацию о далеких мирах. Но ученые — странные люди. И наиболее добросовестные из них кажутся вдвойне странными.
Английские астрономы прежде всего начали сомневаться в полученном результате и придумывать самые неинтересные, самые скучные причины появления необычных импульсов.