Сверхтяжелые элементы искали и в верхних слоях атмосферы, в составе космических лучей. Большие стопки ядерных эмульсий на несколько десятков часов забрасывались навстречу сверхтяжелым галактическим пришельцам. Их следы выискивались в поверхностных кристаллах метеоритов, сотни миллионов лет бороздящих просторы космоса.
Поиски необычных экспонатов для ядерной физики привлекали к себе внимание физиков, химиков, геохимиков и космохимиков в научных центрах разных стран. Но в целом результаты экспериментов по поиску сверхтяжелых элементов в природе пока отрицательны.
Фантастические, огромные по масштабам исследования конкреций, метеоритов, руд, десятков тысяч кубометров подземных вод показали, что если предсказанные элементы и существуют в природе, то их концентрация в наиболее удачных образцах меньше 10–12 грамма на грамм изучаемого материала.
Американские исследователи, которые искали в природе 110-й и 111-й элементы — химические аналоги соответственно платины и золота, — тоже пока ничего не обнаружили.
Физики Лаборатории ядерных реакций в Дубне, как и американские ученые, продолжают поиски следов сверхтяжелых элементов в природе. Может быть, эти поиски ничего не дадут, может быть, разыскиваемые ядра короткоживущие и наблюдать их можно только на ускорителях, в реакциях с тяжелыми ионами.
Но если и эксперименты на ускорителях не приведут к ожидаемому результату, если острова стабильности разделят участь Земли Санникова, то теоретикам придется еще раз пересмотреть сложившееся представление о поведении сверхтяжелой ядерной материи.
Занимаясь фундаментальной проблемой синтеза сверхтяжелых элементов, пробиваясь к границам нуклонной стабильности ядер, физики попутно решают и некоторые практические задачи.
Тяжелые ускоренные ядра оказались пригодными не только для осуществления специфических ядерных реакций, но и для разработки целого ряда далеких от ядерной физики проблем. Тут и вопросы радиационной устойчивости материалов, и медико-биологические задачи.
Наиболее простым по своей идее и в то же время весьма перспективным и впечатляющим по своим результатам является применение пучков тяжелых ионов в качестве «микроигл» для производства ультрамелких по размерам и уникальных по эксплуатационным качествам фильтров.
В тонкой пленке слюды, стекла или пластмассы тяжелое ускоренное ядро пробивает канал сильного радиационного поражения. Если пораженные участки подвергнуть операции химического травления, то в пленках получаются сквозные отверстия.
На ускорителе тяжелых ионов можно получить высококачественные молекулярно-вирусные ядерные фильтры с размером пор от 4 · 10–6 до 10–3 миллиметра. Через такие отверстия не пролезть даже бактериям, размер которых более 0,2 микромикрона.
Ядерные фильтры, или, как их называют, «нуклеопоры», можно будет использовать для холодной стерилизации пищевых продуктов. Широкое применение они найдут в биологии и медицине, например, для разделения клеток различных типов.
— Хотелось бы понять: тысячи новых, искусственно полученных изотопов, новые трансурановые элементы — это что? Укор природе, которая не использовала всех своих возможностей, или они существовали когда-то, а их отсутствие в природе как-то связано с историей Земли?
— Справедливо второе предположение. Современные химические элементы и изотопы — результат естественного отбора по устойчивости среди обширного семейства рождающихся атомных ядер.
— Разве ядра рождаются и умирают?
— Да.
Наша планета образовалась около четырех с половиной миллиардов лет назад. И ядра трансурановых элементов и короткоживущих изотопов просто не дотянули до нашего времени. Почти «вымер» изотоп урана-235.
Проблема относительной распространенности химических элементов на Земле и во вселенной волновала ученых еще до рождения ядерной физики. Процентное содержание того или иного элемента в природе на первый взгляд мало что говорит нашему уму и сердцу. Но эти сухие цифры сразу убеждают в том, что вселенная состоит из единого материала, разложенного по ячейкам таблицы Менделеева. Несомненно, что из одних нейтронов природа не могла бы создать ничего, в том числе и нашу Землю. Только ядра, содержащие протоны, притягивали к себе электроны и превращались в атомы разных химических элементов. Если бы какой-нибудь злоумышленник вроде инженера Гарина или Фантомаса создал прибор, с помощью которого он мог бы уничтожить электромагнитное взаимодействие, все вещество распалось бы на электроны и атомные ядра.