Выбрать главу

Такой метод нагрева не очень-то эффективен. С его помощью можно получить плазму лишь с такими параметрами, которые позволяют только-только свести концы с концами. Добываемая термоядерная энергия никогда не превысит энергии, затраченной на разогрев вещества.

В 1972 году группа американских ученых предложила новую схему лазерного термоядерного синтеза с выигрышем энергии в сотни раз за счет еще большего повышения плотности мишени. По их замыслу, твердый шарик из замороженной смеси дейтерия и трития со всех сторон облучается световыми пучками лазеров. На поверхности сферы должен появиться слой горячей плазмы в виде короны. В перегретой и плотной «короне» должно возникнуть давление до сотен миллиардов атмосфер и разнести плазму во все стороны (и к центру сферы, естественно).

Вот этот «пресс» из быстрых частиц, по идее, и должен уплотнить внутренние области мишени, нагревая их за счет работы сил сжатия. Плазма тотчас приобрела бы плотность, может быть, в сотни раз превышающую плотность твердого тела, и скорость термоядерных реакций при такой плотности резко возросла бы: ядра дейтерия и трития чаще сталкивались бы друг с другом.

Первые эксперименты по сжатию плазмы до сверхплотных состояний были поставлены в Физическом институте имени П. Н. Лебедева. Там под руководством Н. Басова в 1970 году была создана уникальная лазерная установка для сферически симметричного облучения мишени. За короткое время, приблизительно равное 10–9 секунды, девять лазерных пучков установки обрушивали на твердый шарик диаметром 10–2 сантиметра, помещенный в центре вакуумной камеры, энергию в 1000 джоулей. Световые лучи практически одновременно, с точностью до 10–10 секунды, сходились в одной точке, создавая плазму и вызывая в ней термоядерную реакцию.

Мгновенный, по сути дела, процесс образования и разлета плазмы ученые анализировали с помощью киноаппарата, только не обычного, а лазерного сверхскоростного с частотой съемки до 1 миллиарда кадров в секунду. Аналогичные термоядерные установки были запущены во Франции и США. Однако проблема лазерного управляемого термоядерного синтеза еще далеко не решена.

В сверхсжатой мишени термоядерные реакции обещают стать энергетически выгодными, если увеличить мощность лазеров до 105–106 джоулей и выполнить жесткие требования по отношению к форме лазерного импульса.

Но сотрудники ФИАНа и Института прикладной математики АН СССР разработали новую схему термоядерного синтеза. Эта схема дает возможность получать в 1000 раз больше энергии по сравнению с затрачиваемой на создание плазмы и одновременно отменяет особые требования на форму светового лазерного импульса.

Идея заключается в сжатии лучами лазеров не твердых шариков, как это было в предыдущем случае, а мишеней, представляющих собой тонкие сферические оболочки, состоящие из целого набора слоев легких веществ, тяжелых и термоядерного горючего.

Лазеры с импульсами простой формы и с общей мощностью в миллион джоулей сжимают вещество мишени до плотности, почти в 10 раз большей, чем у самого тяжелого химического элемента. Из теоретических оценок следует, что в этих условиях термоядерные реакции синтеза будут энергетически выгодными.

Теперь главная задача заключается в развитии лазерной техники. Ученые работают над созданием крупных лазерных установок, которые позволили бы проверить те новые физические идеи, которые помогут решить проблемы управляемого лазерного синтеза.

После того как в США начались успешные исследования на термоядерных установках непрерывного действия типа Токамак, сотрудники Комиссии по атомной энергии высказали предположение, что демонстрационный действующий термоядерный реактор будет, вероятно, закончен уже в середине 90-х годов.

По мнению американских ученых, работающих в области лазерного термоядерного синтеза, демонстрационный лазерный термоядерный реактор заработает лет через 15, то есть тоже в 90-х годах.

Какой подход к осуществлению термоядерного реактора окажется наиболее реальным, пока неясно. «…Еще неизвестно, — говорил Л. Арцимович, — на какой ветке вырастет золотое яблоко».

В настоящее время исследования лазерного термоядерного синтеза, так же как и осуществление непрерывных реакций слияния ядер в условиях длительного удержания плазмы с помощью магнитного поля, еще не вышли за рамки научно-исследовательских лабораторий. Но решение этих сложных задач не за горами, особенно в условиях тесного международного сотрудничества.