«Эйнштейн не хотел отвести столь принципиальную роль теории, имеющей статистический характер. Считая ее лучшим при данном состоянии знаний описанием атомных явлений, он все же не был готов принять ее в качестве окончательной формулировки законов природы. Фраза „но не думаете же вы, что Бог играет в кости“ вновь и вновь произносилась им почти как упрек. По существу, различия между нашими двумя подходами лежали еще глубже. Эйнштейн в своих моделях физики всегда исходил из представления об объективном, существующем в пространстве и времени мире, который мы в качестве физиков наблюдаем, так сказать, лишь извне и движение которого определяется законами природы. В квантовой теории подобная идеализация уже невозможна; устанавливаемые ею законы природы говорят о временных изменениях возможного и вероятного; но условия, определяющие переход от возможности к факту, здесь не поддаются предсказанию: их можно зарегистрировать лишь статистически».
Ни в коей мере не претендуя на то, чтобы вмешаться в спор великих, мы позволим себе высказать собственное мнение и то лишь потому, что оно имеет непосредственное отношение к содержанию нашей книги. Речь пойдет вот о чем.
Описать некоторую физическую систему — что это означает с точки зрения ньютоновской физики? Это значит получить возможность для любого момента времени знать координаты и скорости составляющих систему компонентов. Говоря о координатах и скоростях, мы предполагаем существование не зависящих от описываемой системы пространства и времени. Согласно И. Ньютону, пространство (отсюда — координаты) и время есть та арена, на которой разыгрываются события во Вселенной.
Основным вкладом В. Гейзенберга в квантовую физику является его знаменитое соотношение неопределенностей, согласно которому мы не можем знать одновременно и точно и координаты и скорость объекта. В тех случаях, когда мы не можем знать что-то точно, современная наука предлагает нам единственный способ: описывать это «что-то» в терминах вероятностей. Попробуем рассуждать, следуя В. Гейзенбергу.
Согласно современным воззрениям (а это и есть та самая структура мышления, о которой говорит В. Гейзенберг) пространство и время не существуют независимо от материи. Наоборот, материальные объекты порождают пространство и время. Там, где нет материи, нет ни времени, ни пространства. Вот и получается заколдованный круг. Мы пытаемся описать поведение материальных объектов через то, что они порождают, что зависит от них самих.
Вместе с тем современная физика располагает рядом величин, таких, как электрический заряд, спин, лептонный заряд и тому подобное, которые могут быть известны совершенно точно и, следовательно, не требуют привлечения вероятностных подходов. Может быть, имеет смысл отказаться, естественно, там, где это существенно, от описания поведения объекта в терминах координат и скоростей?
Мы ни в коей мере не претендуем на высказывание каких-то советов физикам, и все сказанное имеет для нас отношение лишь к реальным возможностям получения информации о физических системах.
Несколько слов о термодинамике — еще одной замкнутой, согласно классификации Гейзенберга, науке. Объектами изучения термодинамики являются системы, состоящие из очень большого числа компонентов: молекул или атомов. Мы уже говорили, что практически все законы термодинамики выводятся из двух основных: закона сохранения энергии и закона неубывания энтропии. Примечательнее всего то, что как при формулировке основных законов, так и при дальнейших выводах свойства самих компонентов системы, в данном случае молекул или атомов, практически не используются. Что требуется от молекул для того, чтобы состоящая из них система подчинялась законам термодинамики? Обладать некоторым запасом кинетической энергии и обмениваться этим запасом с другими молекулами в актах взаимодействия при условии, что сумма энергий всех молекул остается постоянной. Последнее условие и есть упомянутое условие того, чтобы система была замкнутой, то есть не обменивалась энергией с другими системами.
Такими же свойствами обладают не только системы, состоящие из молекул и атомов, но и великое множество других систем, в том числе и полностью абстрактных. Например, множество чисел, для которых мы ввели условие, что они могут меняться как угодно, лишь бы сумма оставалась постоянной.