Выбрать главу

Однако «преходящие» гипотезы стали фундаментом современной физики.

В начале XX века развернулся штурм атома. Резерфорд в результате остроумных опытов открыл атомное ядро, и ученые углубились в неведомый дотоле микромир. Проникнув своим дерзким умом в святая святых природы, они, естественно, и здесь попытались применить уже зарекомендовавшие себя законы большого мира, использовать знакомые понятия, образы, аналогии.

Первая модель атома, предложенная Резерфордом: в центре — положительное ядро, вокруг которого вращаются электроны, имела очевидную аналогию с образами вселенной. Это солнечная система в миниатюре, где ядро играет роль центрального светила, а электроны — роль планет.

Но сходство оказалось чисто внешним. Можно без особого труда рассчитать на бумаге движение небесных светил, точно указать расположение их в прошлом, предсказать их положения в будущем. Но когда физики попытались проделать ту же операцию с крошечной планетарной системой атома, у них ничего не получилось. Уравнения говорили: такой атом не может существовать! Он неустойчив!

В замешательстве и недоумении ученые проверяли свои расчеты, выискивали ошибки и неточности, повторяли все сначала. Но уравнения были непреклонны: законы физики не допускали существования таких атомов. И виноват в этом был электрон.

Протокол о необъяснимом

Крошечный, невидимый сгусток отрицательного электричества открыто попирал, казалось бы, незыблемые законы большого мира. Если верить этим законам, электрон, как всякое заряженное электричеством тело, вращаясь по орбите вокруг ядра, должен терять свою энергию на излучение. Растратив ее, электрон должен приблизиться, притянуться к положительно заряженному ядру и упасть на него. Но на самом деле это никогда не случается.

Временный выход из тупика вскоре дал никому не известный двадцатипятилетний датский физик Нильс Бор. Он предположил, что в атомах существуют устойчивые орбиты, летая по которым электроны не излучают, а поэтому не теряют энергию и не приближаются к ядру.

Это не только не вытекало из классической физики, но прямо противоречило ей. Однако боровский постулат покоился на факте существования атомов.

К сожалению, постулат — это не объяснение, а скорее «протокол о необъяснимом поведении». Это не революция, а конституция, принятая под давлением обстоятельств.

Следующие предположения — постулаты, выдвинутые Бором, связали его модель атома с квантами света и, что самое важное, с закономерностями, давно известными из наблюдений оптических спектров.

Бор предположил, что устойчивые орбиты электронов в атоме связаны с вполне определенным запасом энергии. Чтобы перейти с орбиты на орбиту, электрон должен поглотить или излучить квант света.

Так Бор ввел в модель атома световой квант — таинственное и не признанное в то время дитя Эйнштейна. Орбиты электронов продолжали напоминать орбиты планет. Но если за многовековую историю астрономии так и не удалось выяснить, чем определяются радиусы этих орбит (законы Кеплера лишь фиксируют отношение их радиусов), Бор сразу связал закономерности орбит электронов с квантованными запасами энергии их движения, а квантовые числа совпали с числами, стоящими в полученных из опыта формулах, связывающих частоты спектральных линий в атомных спектрах.

Построить устойчивую модель атома водорода и связать ее с непонятными до того закономерностями спектральных линий Бору позволило гениальное, но противоречивое соединение идеи квантовых скачков с уравнениями классической механики, категорически не допускающими скачков. Это произвело потрясающее впечатление на современников, гораздо более сильное, чем само открытие планетарной структуры атома.

Но как с физической, так и с философской точки зрения атом Бора не мог считаться решением задачи.

Осталась неясной лишь малость. Почему же электрон, летая по боровской орбите, вопреки классической электродинамике не излучает? В чем состоит механизм перехода с орбиты на орбиту и как в процессе этого перехода рождается или поглощается квант света? Открытым оставался основной вопрос — почему атом устойчив?

Электрон оставался своенравным не только в атоме. И в свободном пространстве он вел себя как-то ненормально с точки зрения ученых, привыкших доверять порядку в мире. Рассматривая электрон как заряженную материальную частицу, физики не могли даже судить о траектории его движения вне атома.

Вот источник, из которого вылетел электрон. Вот щель, через которую он пролетел. Но где, в каком месте он ударится о фотопластинку, стоящую на его пути? Где появится пятнышко — след этого удара, — заранее предсказать невозможно.