Выбрать главу

Мало кто из физиков хотел ломать себе голову над этой безумной теорией.

Поэтому-то и через двадцать лет после создания новой теории в ее смысл проникли лишь несколько физиков. Остальным она оставалась чуждой. И причина была та же: никто не мог понять и прочувствовать какое-нибудь явление иначе, как в виде конкретной механической модели. Сам Максвелл был изобретательным творцом моделей электромагнитного поля. В одной из таких моделей шестиугольные «молекулярные вихри» приводятся в движение «направляющими колесиками». Это показывает, что он сам еще долго не понимал, что создал новую науку, которая не нуждается в опоре на динамику Ньютона, а входящие в нее величины являются столь же фундаментальными, как силы и движения. Действительно, через семь лет после создания теории Максвелл писал: «Я приложу все усилия к тому, чтобы представить как можно яснее соотношение между математической формой этой теории и математической формой фундаментальной науки о динамике для того, чтобы мы могли в какой-то мере подготовиться к выбору тех динамических моделей, среди которых мы будем искать иллюстрации или объяснения явлений электромагнитных».

То, что сам Максвелл не сумел вырваться из пут механических моделей, пожалуй, самое курьезное во всей этой истории. Не будучи в силах отрешиться от желания иметь наглядную модель, он нашел ее в упругих силовых трубках Фарадея, преобразовав их в наглядные картины силовых линий электромагнитных полей, верно служащих нам и поныне.

Теперь наши приборы позволяют измерять реальные величины — поля, входящие в уравнения Максвелла. Все это вместе с многолетней тренировкой, через которую прошли не только поколения ученых, но и поколения школьников, сделало для нас уравнения Максвелла не менее понятными, чем уравнения механики. И нам зачастую трудно понять, какого напряжения мысли требовало освоение этих уравнений менее чем сто лет назад.

Да и полвека назад никто не представлял себе электромагнитные поля иначе, чем натяжениями и волнами эфира.

Впрочем, по признанию одного из крупнейших физиков нашего времени, даже «современные представления не могут служить основой для понимания этих электромагнитных колебаний, которые не сводятся к классическому и наглядному представлению о колебаниях материального тела; висящие в пустоте, если можно так сказать, они выглядят для непосвященных (а может быть, даже и для физиков) чем-то довольно таинственным».

Что же требовать от современников Максвелла! Несмотря на свои невероятные свойства, эфир прочно утвердился в их сердцах, ибо люди, сформировавшие свои взгляды под влиянием ньютоновской физики, идеалом которой было сведение всех явлений к механическим, не могли отказаться от эфира как переносчика световых волн. Не могли поверить в самостоятельную сущность света и других еще неведомых электромагнитных волн.

Теория Максвелла явилась в науке первым этапом немеханической физики, первым этажом в грандиозной пирамиде все усложняющихся абстракций. Мы увидим, что трудности, связанные с освоением новых абстракций, возникнут вновь, когда наступит эра теории относительности и квантовой механики.

Уравнения Максвелла содержали в себе не только описание известных явлений, но и предсказание новых, открытых только впоследствии, в том числе предсказание существования электрической индукции и радиоволн. Они не содержали лишь одного — в них не было ничего относящегося к световому эфиру и его поразительным свойствам.

Эфир просто остался за бортом теории Максвелла, но это никак не мешало ей уверенно помогать развитию науки. Для некоторых ученых эфир стал просто синонимом пустого пространства.

Но, несмотря на то, что через 12 лет Герц обнаружил на опыте предсказанные теорией Максвелла электромагнитные волны, возбуждаемые в его приборах, традиции механистической физики не были сломлены. Многие физики упорно продолжали пытаться подвести под теорию Максвелла ходули привычной наглядности. Одни считали электромагнитные поля Максвелла особыми натяжениями эфира, так же как ранее принимали свет за поперечные волны в эфире.

Другие, продолжая считать эфир реальностью, предпочитали забывать о его противоречивых свойствах, относя его в разряд непознаваемых невесомых субстанций.

Первая влюбленность

В это переломное время в науку вошел провинциальный юноша Генрих Антон Лорентц. Он уже год как считался студентом Лейденского университета и даже получил в 1871 году (в 18 лет — небывалый случай!) диплом кандидата наук с отличием. Он познакомился с теорией Максвелла случайно, обнаружив в библиотеке физической лаборатории университета нераспечатанные конверты со статьями Максвелла.