И даже это было еще не самым удивительным.
Что, если бы вы увидели человека, бегущего вверх по отвесной стене? Это невозможно? Законы тяготения этого не допускают? Приблизительно то же подумали ученые, когда увидели, как жидкий гелий с необычайной быстротой ползет вверх по стенкам сосуда. Это невозможно, ужаснулись многие из них, а трение, а вязкость?!
И еще более изумились, услышав мнение советского ученого Петра Леонидовича Капицы: вязкости у жидкого гелия вблизи абсолютного нуля нет вовсе. Это сверхтекучая жидкость.
Так впервые в 1938 году мир услышал удивительное слово «сверхтекучесть».
Вывод П. Л. Капицы был результатом долгих и кропотливых экспериментов, итогом многих раздумий. Почему так молниеносно распространяется тепло внутри жидкого гелия? Как и обычно, его переносит сама жидкость. Ее слои перемешиваются и менее теплые нагреваются от более теплых. Так происходит всегда во всех жидкостях. Но в жидком гелии это происходит молниеносно. Как же так, ведь слои всегда трутся друг о друга, а это должно мешать быстрому перемешиванию. А если вязкость не препятствует? Значит, ее нет!
И Капица подтверждает свою догадку блестящим экспериментом. Он пропускает жидкий гелий сквозь мельчайшие щели — капилляры, через которые обычная вязкая жидкость если и проходит, то ей нужно затратить на это многие миллиарды лет. А гелий, охлажденный до 2 градусов выше абсолютного нуля, просочился буквально на глазах, получив «диплом» первой в истории науки сверхтекучей жидкости.
Жидкость без вязкости! Это было одним из поразительных открытий нашего века. Как такая жидкость отнеслась бы к инородному телу, погруженному в нее? Оказала бы ему сопротивление или нет?
И экспериментатор спешит поставить такой опыт: он опускает в жидкий гелий качающийся маятник (паучок Капицы). Жидкость без трения, без вязкости не остановит его. Но что это? Совершается непонятное: маятник прекращает движение, останавливается… Жидкий гелий повел себя как самая обычная, тривиальная жидкость.
Есть от чего прийти в смятение! В одном случае (с капилляром) жидкий гелий не имеет вязкости, в другом (с маятником) — имеет. Все происходит так, как будто одновременно в нем заключены… две жидкости.
Так оно и оказалось. Вот как описывает ни на что не похожее поведение жидкого гелия замечательный советский физик Лев Давидович Ландау: «…часть жидкости будет вести себя как нормальная вязкая жидкость, „цепляющаяся“ при движении… Остальная же часть массы будет вести себя как не обладающая вязкостью сверхтекучая жидкость».
Так гелий доказал, что знакомая нам при нормальных температурах жизнь веществ в области предельного холода подчиняется совсем иным законам. Здесь отношения между атомами и молекулами диктуются законами микроскопического мира, неподвластными классической физике. Это поняли два замечательных советских физика и не только поняли, но и доказали: академик Капица — рядом убедительных экспериментов, академик Ландау — серией виртуозных логических и математических построений, которые он оформил в 1940 году в виде теории сверхтекучести. Они подарили миру прозрение тайны низких температур…
С этого времени положение в науке о низких температурах резко меняется. Ученые узнали главное — законы, правящие в царстве холода. Теперь оставалось выяснить нормы поведения, которые законы микромира — квантовые законы — диктуют различным веществам.
Приблизительно с тридцатых годов «столица холода» перемещается из Голландии в Советский Союз. Вокруг Капицы и Ландау сплачивается группа молодых ученых, работы которых в новой области физики становятся ведущими. И если раньше исследователи двигались только по серому следу оловянной чумы и желтому следу гелия, то теперь изыскания ведутся сразу во многих направлениях. Фронт исследований простирается от Москвы до Ленинграда, от Харькова до Тбилиси, от Сухуми до Свердловска.
Кольцо вокруг тайны холода сужается. Теперь ученые наблюдают уже не случайные, непредвиденные явления. Они стараются получить результаты, предсказанные теорией сверхтекучести.
Часть из них продолжает двигаться по следу гелия.
Действительный член Академии наук Грузинской ССР Э. Л. Андроникашвили изучает свойства вращающегося гелия. Гелий остается верным себе. И вращается-то он не так, как все другие жидкости. Если очень закрутить его, он начинает вести себя уже не как жидкость, а как упругое тело. Отдельные слои становятся упругими жгутами, которые упираются и противятся вращению. Ученый упорно ищет отгадку очередного фокуса квантовой жидкости.