Выбрать главу

В случае, когда число положительных оценок товаров или услуг после рекламы превышает число отрицательных, считаем так: С=(a2-ab)/de.

Тут «a» — это число положительных оценок; «b» — число отрицательных оценок; «d» — объем содержания текста, имеющего прямое отношение к изучаемой проблеме; «e» — общий объем анализируемого текста.

В случае, когда число положительных оценок меньше, чем отрицательных, считаем иначе: С = (ab-b2) / de.

Построенная на изменении полученных чисел диаграмма больше, чем все горластые рекламщики, покажет клиенту, каким же он был идиотом, поведясь на увещевания акул из агентства.

Есть и более простые способы измерения.

К примеру, удельный вес той или иной ключевой для нас фразы (слова) можно вычислить с помощью формулы: Е=f/g, где f — число единиц анализа, фиксирующих данную категорию, а g — общее количество единиц анализа.

А теперь 6 бесплатных советов по контент-анализу, открытых мне одним контентологом под страшными пытками:

№ 1. Качественный или количественный анализ нам нужен?

Количественный контент-анализ в первую очередь интересуется частотой появления в тексте определенных характеристик (переменных) содержания.

Например, нам нужно узнать, чем интересуется немецкая пресса, чьи читатели — пивуны-привереды (в смысле — любят пиво качественного разлива).

И чего мы делаем? Мы берем первую сотню наиболее часто упоминаемых в этой прессе словечек. Отсеиваем к чертовой бабушке всякую байду вроде: "Биттэ-дриттэ, хенде-хох!", "Хитлер капут, русише швайне!" и прочие «данкешоны». Оставляем только то, что связано с предпочтением тех или иных сортов пива и закуси к нему (это прозвучит дико, но так оно и есть на самом деле: несчастная немчура не знает вкуса сушеной воблы, не умеет правильно разбавлять пиво шнапсом и поэтому уже какой век мечется в поисках лучшей выпивки и закуски). И считаем-считаем-считаем…

И вот таким банальным способом мы, дорогие мои братцы и сестрицы, и вылавливаем еще не окученный конкурентами сегмент на рынке пивных услуг.

Качественный же контент-анализ позволяет делать выводы даже на основе единственного присутствия или отсутствия определенной характеристики содержания.

№ 2. Что такое простые частоты?

Это подсчет частот появления в текстах различных слов или тем.

Например, если мы видим в статье "наш любимый Василь Василич Пупкин", значит, это статья на его бабки.

Если — просто "уважаемый всем народом лидер", значит — на бабки его спонсоров.

Если же без пиетета — «Пупкин» или "политический деятель", значит — на бабки органов местного самоуправления.

Если "душитель свободы" и "кровавый бандит" значит, на членские взносы радикально-оппозиционной антипупкинской партии.

№ 3. А что есть относительные частоты?

Однако просто частота появления того или иного слова или темы мало что говорят. Гораздо более информативны не абсолютные, а относительные частоты, которые вычисляются как отношение абсолютной частоты к длине анализируемого текста.

В зависимости от того, что является переменной содержания, под длиной текста может пониматься количество слов в нем, количество предложений, абзацев и пр.

№ 4. Надо ли применять базовые частоты?

Естественно!

Например, депутаты Госдумы ругают Правительство.

Это мода такая.

И если нам поступил заказ, проверить, насколько удачны пиар-действия лоббистов по свержению нынешнего кабинета министров, то глупо браться за тексты выступлений депутатов и оценивать по их агрессивности скорость роспуска команды премьера.

Надо взять в качестве образца тексты (изготовить, так сказать, "частотные словарики") прежних депутатских выступлений. И сделать на их основе таблицу с базовыми частотами употребления приготовленных нами для исследований единиц анализа (например, криков: "Долой!" или "В отставку раздолбаев!").

И тогда — сравнивая результаты теперешних выступлений с базовыми, мы поймем насколько они действительны агрессивны.

Отклонение частот вычисляют по формуле: h-j/i.

Тут у нас: h — количество слов данной категории, реально встретившихся в тексте, j — ожидаемое число вхождений слов данной категории в текст, а i — стандартное отклонение.