В молекуле ДНК можно, таким образом, выделить совершенно регулярную, монотонно повторяющуюся часть – сахарофосфатный остов, несущий чередующиеся в определенной последовательности основания.
С такой способностью нуклеотидов к конкретному «узнаванию» друг друга связан механизм образования «копий» молекулы ДНК в клетке. В некоторый момент двойная спираль раскручивается, и специальные ферментные системы «достраивают» к каждой из одиночных нитей комплементарную ей пару; этот процесс называется репликацией.
Различия в строении молекул ДНК и рибонуклеиновых кислот (РНК) – минимальное: вместо остатка дезоксирибозы в сахарофосфатном остове – остаток рибозы; вместо пиримидинового основания тимина – урацил, отличающийся от него лишь отсутствием одной метильной группы. Это отличие не мешает образованию такой же пары водородных связей с аденином – партнером тимина по двойной спирали, благодаря чему оказывается возможным синтез копий молекул РНК, комплементарных содержащимся в клетке молекулам ДНК (транскрипция) – по механизму, совершенно аналогичному механизму репликации.
Более того, выяснилось, что существуют специальные ферменты, с помощью которых возможен и обратный процесс – синтез молекул ДНК, комплементарных РНК. Заметим, что это явление, встречающееся сравнительно редко, оказалось чрезвычайно важным элементом арсенала средств генетической инженерии.
Основное же назначение РНК – быть матрицей для синтеза белковых молекул. Формально соответствие между последовательностью нуклеотидов в молекуле РНК и аминокислотной последовательностью синтезируемой с ее помощью молекулы белка может быть выражено через таблицу знаменитого генетического кода, сопоставляющую каждой тройке нуклеотидов (триплетам) определенную аминокислоту; так, например, УУУ ЦЦА ГАА АГУ (это обычная форма записи нуклеотидных последовательностей – с помощью первых букв названий соответствующих оснований) соответствует аминокислотной последовательности Phe–Pro–Glu–Ser (фенилаланин – пролин – глутаминовая кислота – серин). В клетке такая перекодировка – синтез молекул белка – осуществляется с помощью сложных и очень интересных механизмов, от описания которых здесь, однако, лучше воздержаться. Отметим еще, что, помимо триплетов, соответствующих той или иной аминокислоте, имеются еще и триплеты, определяющие начало и конец белковой молекулы.
Такова в общих чертах схема образования белков, повторяю – нас интересует именно схема, а не лежащие в ее основе механизмы. Ибо ровно столько нам необходимо знать для продолжения разговора о генетической инженерии.
Из генетики
Почему-то в представлении людей, незнакомых поближе с генетической инженерией, хоть и интенсивно восторгающихся ее достижениями, этот «генетический инженер» является в образе лесковского Левши – умельца, выполняющего хитроумнейшие операции в клетке чуть ли не с помощью сверхминиатюрнейшего скальпеля, тончайших крючочков и иголочек и, конечно, «мелкоскопа».
Ничуть не бывало. Даже у самого выдающегося «генетического инженера» могут быть, как говорит мой знакомый экспериментатор, «обе руки левые». И работает он в основном головой, техническое оснащение его лаборатории – довольно несложное, а основной его инструмент – различные ферменты очень специального назначения. Именно открытие и выделение этих ферментов сделали возможной целенаправленную перестройку генетического материала.
Как известно, в клеточном ядре этот материал организован в виде хромосом, причем у высших организмов он как бы сдублирован – представлен парами хромосом, несущими информацию об одних и тех же функциональных элементах (диплоидный набор хромосом). Исключение составляют половые клетки – гаметы, в которых каждый тип хромосомы представлен лишь одиножды (гаплоидный набор); при слиянии родительских гамет вновь образуется клетка с диплоидным набором.