And so he struggled on. As he did he saw it anew, as fresh as in his undergraduate days: the structure of science was so beautiful. It was surely one of the greatest achievements of the human spirit, a kind of stupendous parthenon of the mind, constantly a work in progress, like a symphonic epic poem of thousands of stanzas, being composed by them all in a giant ongoing collaboration. The language of the poem was mathematics, because this appeared to be the language of nature itself; there was no other way to explain the startling adherence of natural phenomena to mathematical expressions of great difficulty and subtlety. And so in this marvelous family of languages their songs explored the various manifestations of reality, in the different fields of science, and each science worked up its standard model to explain things, all constellating at some distance around the basics of particle physics, depending on what level or scale was being investigated, so that all the standard models hopefully interlocked in a coherent larger structure. These standard models were somewhat like Kuhnian paradigms but in reality (paradigms being a model of modeling) more supple and various, a dialogic process in which thousands of minds had participated over the previous hundreds of years; so that figures like Newton or Einstein or Vlad were not the isolate giants of public perception, but the tallest peaks of a great mountain range, as Newton himself had tried to make clear with his comment about standing on the shoulders of giants. In truth the work of science was a communal thing, extending back even beyond the birth of modern science, back all the way into prehistory, as Michel had insisted; a constant struggle to understand. Now of course it was highly structured, articulated beyond the ability of any single individual to fully grasp. But this was only because of the sheer quantity of it; the spectacular efflorescence of structure was not in any particular incomprehensible, one could still walk around anywhere inside the parthenon, so to speak, and thus comprehend at least the shape of the whole, and make choices as to where to study, where to learn the current surface, where to contribute. One could first learn the dialect of the language relevant to the study; which in itself could be a formidable task, as in su-perstring theory or cascading recombinant chaos; then one could survey the background literature, and hopefully find some syncretic work by someone who had worked long on the cutting edge, and was able to give a coherent account of the status of the field for outsiders; this work, disparaged by most working scientists, called the “gray literature” and considered a vacation or a lowering of oneself on the part of the synthesist, was nevertheless often of great value for someone coming in from the outside. With a general overview (though it was better to think of it as an underview, with the actual workers up there lost in the dim rafters and entablatures of the edifice), one could then move up into the journals, the peer-reviewed “white literature,” where the current work was being recorded; and one could read the abstracts, and get a sense of who was attacking what part of the problem. So public, so explicit… And for any given problem in science, the people who were actually out there on the edge making progress constituted a special group, of a few hundred at most — often with a core group of synthesists and innovators that was no more than a dozen people in all the worlds — inventing a new jargon of their dialect to convey their new insights, arguing over results, suggesting new avenues of investigation, giving each other jobs in labs, meeting at conferences specially devoted to the topic — talking to each other, in all the media there were. And there in the labs and the conference bars the work went forward, as a dialogue of people who understood the issues, and did the sheer hard work of experimentation, and of thinking about experiments.
And all this vast articulated structure of a culture stood out in the open sun of day, accessible to anyone who wanted to join, who was willing and able to do the work; there were no secrets, there were no closed shops, and if every lab and every specialization had its politics, that was just politics; and in the end politics could not materially affect the structure itself, the mathematical edifice of their understanding of the phenomenal world. So Sax had always believed, and no analysis by social scientists, nor even the troubling experience of the Martian terraforming process, had ever caused him to waver in that belief. Science was a social construct, but it was also and most importantly its own space, conforming to reality only; that was its beauty. Truth is beauty, as the poet had said, speaking of science. And it was; the poet had been right (they weren’t always).
And so Sax moved about in the great structure, comfortable, capable, and on some levels content.
But he began to understand that as beautiful and powerful as science was, the problem of biological senescence was perhaps too difficult. Not too difficult to be solved ever, nothing was that, but simply too difficult to be solved in his lifetime. Actually it was still an open question how hard a problem it was. Their understanding of matter, space and time was incomplete, and it might be that it would always necessarily shade off into metaphysics, like the speculations about the cosmos before the Big Bang, or things smaller than strings. On the other hand the world might be amenable to progressive explanations, until it all (at least from string to cosmos) would be brought someday within the realm of the great parthenon. Either result was possible, the court was still out, the next thousand years or so should tell the tale.
But in the meantime, he was experiencing several blank-outs a day. And sometimes he was short of breath. Sometimes his heart seemed to beat so hard. Seldom did he sleep at night. And Michel was dead, so that Sax’s sense of the meaning of things was becoming uncertain, and in great need of help. When he managed to think at all on the level of meaning, he found that he felt he was in a race. Him and everyone else, but especially the life scientists actually at work on the problem: they were in a race with death. To win it, they had to explain one of the greatest of the great unexplainables.
And one day, sitting down on a bench with Maya after a day in front of his screen, thinking of the vastness of that growing wing of the parthenon, he realized that it was a race he couldn’t win. The human species might win it, someday, but it looked to be a long way off still. It was no great surprise, really; he knew this; that is to say, he had always known it. Labeling the current largest manifestation of the problem had not disguised to him its profundity, “the quick decline” was just a name, inaccurate, over-simple — not science, in fact, but rather an attempt (like “the Big Bang”) to diminish and contain the reality, as yet not understood. In this case the problem was simply death. A quick decline indeed. And given the nature of life and of time, this was a problem that no living organism would ever truly solve. Postponements, yes; solutions, no. “Reality itself is mortal,” he said.
“Of course,” Maya said, absorbed in the sight of the sunset.
He needed a simpler problem. As a postponement, as a step toward the harder problems; or just as something he could solve. Memory, perhaps. Fighting the blank-outs; it was certainly a problem that stood at hand, ready for study. His memory was in need of help. Working on it might even cast light on the quick decline. And even if it didn’t, he had to try it, no matter how hard it was. Because they were all going to die; but they could at least die with their memories intact.