Выбрать главу

Кстати, нужно заметить, что чаще всего в газотурбинном двигателе бывает не одна камера сгорания, а несколько — иногда даже полтора десятка. Они «опоясывают» двигатель.

Вместо многих отдельных камер сгорания в авиационных газотурбинных двигателях иногда применяют одну — кольцевую.

Каждая камера — двойная цилиндрическая труба, отдаленно напоминающая самовар. Внутренняя труба называется пламенной. Внутри нее сгорает топливо, а воздух попадает через ряд каналов или кольцевых щелей. В днище установлены форсунки, впрыскивающие топливо.

Воздуха в пламенную трубу подается больше, чем нужно для сгорания. Этот «избыточный» воздух охлаждает внутренность трубы.

Охлаждается труба и снаружи. Ведь она помещается внутри другой трубы, называемой воздушной камерой. Из кольцевого пространства между обеими трубами воздух и направляется в пламенную трубу, которая оказывается, таким образом, в воздушной «рубашке». У стенок температура не превышает поэтому примерно 800°.

Не только от высокой температуры приходится защищать металл.

Горячие газы и кислород, которого немало в избыточном воздухе, могут разрушить нагретые стенки камеры. Для изготовления пламенных труб идет специальная жароупорная, химически стойкая сталь.

Нельзя забывать и того, что при нагревании металл расширяется. Если камеру сгорания закрепить с двух концов, то поломка неизбежна. Поэтому ее закрепляют только одним концом, а другой имеет возможность скользит, удлиняться.

Воздух в камере тщательно перемешивается с горючим. Раскаленные газы встречают струю впрыскиваемого топлива и зажигают его. Однажды зажженное, топливо будет само продолжать гореть.

Продукты сгорания, выходящие из пламенной трубы, смешиваются с потоком воздуха из воздушной камеры, и температура их понижается.

Для нормальной работы камеры необходимо распылить топливо форсунками, зажечь струю топлива, обеспечить устойчивое горение, равномерную подачу воздуха и топлива и перемешивание воздуха о газами.

Чтобы создать удовлетворительно работающую конструкцию камеры сгорания, пришлось производить многочисленные и сложные исследования.

Вот, например, как изучали распыливание топлива. Жидкую частицу трудно измерить. Поэтому через распылительную форсунку вместо топлива разбрызгивали расплавленный парафин и затем собирали быстро затвердевшие мельчайшие его капельки. Просеиванием разбивали частички на группы разных размеров. Надо было определить размеры нескольких тысяч частиц, чтобы решить, как лучше подавать топливо в двигатель и как лучше распылять ею.

При испытаниях камеры сгорания инженеры встретились с непонятными, на первый взгляд, явлениями. Сварной шов на камере после непродолжительной работы двигателя разрывался, как будто стенка была сделана не из прочной стали, а из жести.

Сначала думали, что в этом виновата сварка. Эту мысль, однако, скоро пришлось оставить: разрывы появлялись и там, где швов поблизости не было. Решили сделать стенки потолще, но… аварии продолжались.

Тогда стали внимательно исследовать места поломок и заметили, что металл там уставал, прочность ею падала. Наблюдения за давлением воздуха, идущею из компрессора, объяснили причину усталости металла. Оказалось, что воздух пульсировал, давление его менялось много раз в секунду. Это и было причиной поломок. Когда воздушную камеру сделали из мягкой стали, лучше переносящей частые колебания давления, аварии прекратились, и срок службы камеры намного увеличился.

Тщательно, шаг за шагом изучают инженеры работу камеры сгорания. И если современные газотурбинные двигатели служат десятки и сотни часов, этим могут гордиться наряду с конструкторами, металлургами и инженеры-химики, физики, теплотехники — творцы «огненного дыхания» газовой турбины.

Наиболее ответственная деталь турбины — это лопатка.

Каждая лопатка растягивается центробежной силой, превосходящей ее вес в десятки тысяч раз. Да вдобавок она еще все время находится в потоке горячих газов и нагревается до высокой температуры. Лопатка может поэтому «поползти», удлиниться и довольно значительно. Тогда она заденет за кожух и авария неизбежна.

Даже камеру сгорания, где непрерывно бушует поток раскаленных газов, нельзя сравнить по условиям работы с турбиной. Тем более нельзя сравнить с нею компрессор, хотя как в турбине, так и в компрессоре, развиваются большие центробежные силы.

Турбине приходится гораздо тяжелее, чем другим частям газотурбинного двигателя — вот какой можно сделать вывод. Значит, материал для нее должен быть особо прочным и способным сохранять свои свойства при высоких температурах.