Такое количество радиоактивного вещества замечают благодаря меченым атомам. Даже один меченый атом — один атом! — и то обнаруживают прибором — счетчиком заряженных частиц.
Нельзя не удивляться достижениям физиков, которые наблюдают то, что находится далеко за пределами казалось бы возможного.
Один атом… Более того, удалось наблюдать, как вылетает из крошечной металлической пылинки электрон под действием света, как разлетается атомное ядро под ударом космической частицы. Видят следы движения мельчайших обитателей атомного мира. Сфотографирован след электрона, диаметр которого две десятибиллионные доли миллиметра.
Но вернемся к меченым атомам. Как они выдают себя?
Маленькая металлическая трубочка, наполненная газом, и тонкая проволочка внутри нее присоединены к электрической батарее. Тока нет, потому что цепь разорвана, трубка и проволочка не соединяются между собой. Когда в трубочку попадает заряженная частица, она ионизирует газ, выбивает из его атомов электроны, и лавина электронов на мгновение ликвидирует разрыв в цепи. Появляется ток — сигнал частицы о самой себе. Разряд в счетчике передается на усилитель, и счетчик отмечает частицу.
Направленный взрыв.
Врач может проследить путь различных веществ, введенных в организм, его покажут меченые атомы. Биолог изучит дыхание растений. Химик определит, как растворяется то или иное плохо растворимое вещество в воде — меченые атомы покажут его присутствие в столь малом количестве, какое не уловишь обычными весами, даже особо чувствительными, замечающими миллиардную долю грамма. Меченые атомы помогают ему изучать механизм химических реакций. Физик наблюдает, как двигаются атомы в газах, жидкостях, твердых телах, как идет перемешивание, испарение, движение газов.
Меченые атомы сами себя фотографируют — их излучение действует на фотопластинку. Появилось новое слово — радиография (вспомним другое — фотографию!). И металлург может с помощью меченых атомов увидеть на снимке (радиоснимке!), как меняется расположение атомов в металле при разнообразных его превращениях. Инженеру, изучающему трение и износ металлов, подбирающему наилучшую смазку, меченые атомы показывают, что происходит с атомами металлических поверхностей, когда они трутся друг о друга, куда и как перемещаются ничтожные количества веществ при трении и износе.
Можно было бы рассказать еще о многом, что дают нам меченые атомы. Но и из приведенных примеров ясно, каким важным средством изучения множества явлений стали радиоактивные вещества, вырабатываемые атомной промышленностью.
Мы на Земле можем воочию видеть то, что происходит в недрах Солнца и звезд.
Высокие температуры в химии и металлургии позволят добиться новых успехов, которые сейчас еще трудно предвидеть. Не случайно говорят теперь о промышленности высоких температур — новом детище атомного века.
В энергетике атомная техника вызовет настоящий переворот, когда научатся получать дешевую ядерную энергию в больших количествах.
Это будет. Атомная техника — техника коммунизма, и мы заставим силу, скрытую в недрах атома, служить советским людям. Она вооружит нас энергией, — энергией, переделывающей мир.
«Исследовательские работы по применению пара высоких давлений и температуры подводят нас к проблеме использования атомной энергии, — говорит академик Г. М. Кржижановский. — Часть ядерной энергии, идущую на нагревание воды… можно использовать для получения пара высоких давлений, который будет поступать в турбины мощной электростанции, построенной на месте получения атомной энергии. Электрический ток, вырабатываемый на подобных электростанциях, может быть передан затем при помощи высоковольтных линий на большие расстояния».
Атомные газовые турбины на электростанциях, судах, самолетах, тепловозах… Пока мечта, но мечта, которой суждено осуществиться.
Возможное устройство атомной силовой установки и ее применение.
Что может дать атомная энергия высокоскоростной технике?
Конечно, на этот вопрос нельзя еще ответить достаточно определенно и полно. Но кое-что можно сказать уже сейчас.
Считают, что применение атомной энергии позволит значительно повысить скорость истечения газов из ракетного двигателя. Так, если нагревать теплом атомного распада газообразный водород, то он сможет вытекать примерно в 2–3 раза быстрее, чем продукты сгорания самого лучшего топлива. Это обещает ракете высокие космические скорости и далекие космические рейсы с высадкой на планетах. И можно было бы тогда решить главную задачу межпланетных путешествий — обеспечить ракетный корабль энергией.