Há um teorema matemático que afirma que qualquer teoria que obedeça à mecânica quântica e à relatividade tem sempre de obedecer à simetria composta CPT. Por outras palavras, o universo teria de comportar-se da mesma maneira, se substituíssemos as partículas por antipartículas, tomássemos a sua imagem no espelho e ainda se invertêssemos o sentido do tempo. Mas Cronin e Fitch demonstraram que, se substituíssemos partículas por antipartículas e se considerássemos a imagem no espelho, mas não invertêssemos o sentido do tempo, o universo *não* se comportaria da mesma maneira. As leis da física, portanto, devem :, alterar-se quando se inverte o sentido do tempo -- não obedecem à simetria T.
Certamente que o Universo primitivo não obedece à simetria T: à medida que o tempo passa, o Universo expande-se; se andasse para trás, o Universo ter-se-ia contraído. E, como existem forças que não obedecem à simetria T, segue-se que, enquanto o Universo se expande, essas forças podem provocar que mais positrões se transformem em quarks do que electrões em antiquarks. Como o Universo se expandiu e arrefeceu, os antiquarks e os quarks aniquilaram-se e como havia mais quarks do que antiquarks, restou um pequeno excesso de quarks. São eles que constituem a matéria que hoje vemos e da qual nós próprios somos feitos. Assim, a nossa existência real podia ser considerada como confirmação das teorias da grande unificação embora apenas de uma forma qualitativa; as incertezas são tais que é impossível predizer o número de quarks que sobreviveriam à aniquilação ou até se o que restaria seriam quarks ou antiquarks. (Se, no entanto, o excesso fosse de antiquarks, teríamos muito simplesmente chamado quarks aos antiquarks e vice-versa).
As teorias da grande unificação não incluem a força da gravidade. Isto não tem muita importância, porque a gravidade é uma força tão fraca que os seus efeitos podem geralmente ser desprezados quando lidamos com partículas elementares ou átomos. Contudo, o facto de ser de longo alcance e sempre atractiva significa que todos os seus efeitos se juntam. Portanto, pata um número suficientemente grande de partículas de matéria, as forças gravitacionais podem dominar todas as outras forças. É por isso que a gravidade determina a evolução do Universo. Mesmo para objectos do tamanho de estrelas, a força atractiva da gravidade pode vencer todas as outras forças e fazer com que a estrela sofra um colapso. O meu trabalho nos anos 70 incidiu nos buracos negros que podem resultar desses :, colapsos estelares e dos campos gravitacionais que os rodeiam. Foi isso que levou aos primeiros indícios de como as teorias da mecânica quântica e da relatividade geral podiam influenciar-se uma à outra um vislumbre de uma teoria quântica da gravidade ainda por encontrar.
VI. Buracos Negros
A expressão *buraco negro* tem uma origem muito recente. Foi forjada em 1969 pelo cientista americano John Wheeler, como descrição gráfica de uma ideia que data pelo menos de há duzentos anos, do tempo em que havia duas teorias sobre a luz: uma, que Newton preferia, era ser composta por partículas; a outra era ser de natureza ondulatória. Sabemos agora que, na realidade, ambas as teorias estão correctas. Pela dualidade onda/partícula da mecânica quântica, a luz pode ser considerada como uma onda ou como uma partícula. Segundo a teoria ondulatória não era claro como a luz reagia à gravidade. Mas, se for composta por partículas, pode esperar-se que sejam afectadas pela gravidade do mesmo modo que as balas de canhão, os foguetões e os planetas. Ao princípio, as pessoas pensavam que as partículas de luz se deslocavam com uma velocidade infinita, de maneira que a gravidade não seria capaz de as retardar, mas a descoberta de Roemer de que a luz se propaga com velocidade finita significava que a gravidade podia ter um efeito importante.
Partindo desta suposição, um catedrático de Cambridge, John Michell, escreveu em 1783 um artigo que foi publicado nos *Philosophical Transactions of the Royal Society of London*, em que chamava a atenção para o facto de :, uma estrela, que fosse suficientemente maciça e compacta, poder ter um campo gravitacional tão forte que a sua luz não poderia escapar: qualquer luz emitida da superfície seria puxada para trás pela atracção gravitacional da estrela, antes de poder afastar-se. Michell sugeriu que poderia haver um grande número de estrelas como essa. Embora não pudéssemos vê-las, porque a sua luz não nos alcançaria, não deixaríamos de sentir a sua atracção gravitacional. Esses objectos são aquilo a que agora chamamos buracos negros, porque é isso mesmo que são: vazios negros no espaço. Alguns anos mais tarde, o cientista francês Marquês de Laplace apresentava uma sugestão semelhante, segundo tudo indica independentemente de Michell. É interessante o facto de Laplace a ter incluído apenas nas duas primeiras edições do seu livro *Sistema do Mundo (1) nada referindo nas edições seguintes, talvez por ter decidido que era uma ideia disparatada. (Também a teoria da partícula de luz caíu em desagrado durante o século XIX. Parecia que tudo podia ser explicado com a teoria ondulatória e, segundo esta, não era claro se a luz seria ou não afectada pela gravidade).
(1) Houve pelo menos dez edições diferentes do *Exposition du Système du Monde*, publicadas entre 1796 e 1835. Nas primeiras edições, Laplace apresentou o seu argumento sem demonstração, algumas páginas antes do fim do Livro V, Capítulo 6 (*N. do R.*).
De facto, não é realmente consistente tratar a luz como balas de canhão na teoria da gravitação de Newton, porque a velocidade da luz é constante. (Uma bala de canhão disparada da Terra verticalmente para cima, será desacelerada pela gravidade até que acaba por parar e cair. Um fotão, porém, continua para cima, a uma velocidade constante. Como é então que a gravidade pode afectar a luz?) Uma teoria consistente sobre a maneira como a gravidade afecta a luz só surgiu quando Einstein propôs a relatividade :, geral, em 1915. E mesmo então ainda foi preciso mais tempo até que fossem compreendidas as implicações da teoria para as estrelas maciças.
Para se compreender como pode formar-se um buraco negro, precisamos primeiro de compreender o ciclo de vida de uma estrela. Uma estrela forma-se quando uma grande porção de gás (sobretudo hidrogénio) se contrai por causa da atracção gravitacional das suas partes. À medida que a estrela se contrai, os átomos do gás colidem uns com os outros, cada vez com mais frequência e a velocidades cada vez maiores, e o gás aquece. A certa altura, o gás estará tão quente que, quando os átomos de hidrogénio (2) colidem já não ressaltam, mas juntam-se para formar hélio. O calor libertado nesta reacção, que é como a explosão controlada de uma bomba de hidrogénio, faz a estrela brilhar.
(2) Em rigor os protões. Às temperaturas que reinam nos interiores das estrelas, os núcleos dissociam-se dos respectivos electrões e as estruturas atómicas dissolvem-se no *plasma* (*N. do R.).
O calor adicional aumenta também a pressão do gás até esta ser suficiente para equilibrar a atracção gravitacional e o gás deixa de se contrair. É parecido com um balão: há um equilíbrio entre a pressão do ar dentro dele, que tenta dilatar o balão e a tensão da borracha, que tenta tornar o balão mais pequeno. As estrelas permanecem estáveis durante muito tempo, com o calor das reacções nucleares equilibrando a atracção gravitacional. A certa altura, porém, a estrela esgotará o seu hidrogénio e outros combustíveis nucleares. Paradoxalmente, quanto maior for a porção de combustível com que a estrela começa, mais depressa este se esgota. Isto sucede porque, quanto mais maciça for a estrela, mais quente precisa de estar para equilibrar a sua atracção gravitacional. E, quanto mais quente estiver, mais depressa gastará o seu combustível. O nosso Sol tem provavelmente combustível suficiente para mais cinco mil milhões de anos, mas estrelas mais maciças :, podem esgotar o seu combustível em tão pouco tempo como cem milhões de anos, muito menos do que a idade do Universo. Quando uma estrela esgota o combustível, começa a arrefecer e portanto a contrair-se. O que pode acontecer-lhe só foi compreendido pela primeira vez no fim dos anos 20.