Выбрать главу

Que as irregularidades necessárias para justificar estrelas e galáxias tenham levado à formação de um número significativo de buracos negros primevos, depende dos pormenores das condições do Universo nos seus princípios. Portanto, se pudéssemos determinar quantos buracos negros primevos existem actualmente, aprenderíamos muito sobre o início do Universo. Buracos negros primevos com massas de mais de mil milhões de toneladas (a massa de uma grande montanha) só podiam ser detectados pela sua influência gravitacional sobre outra matéria visível ou sobre a expansão do Universo. No entanto, como veremos no próximo capítulo, os buracos negros afinal não são realmente negros: brilham como um corpo quente e, quanto mais pequenos são, mais brilham. Portanto, paradoxalmente, os buracos negros mais pequenos acabam por ser realmente mais fáceis de detectar do que os maiores!

VII. Os Buracos Negros

Não São Tão Negros

Antes de 1970, as minhas investigações sobre a relatividade geral tinham-se concentrado sobretudo na questão de ter existido ou não uma singularidade inicial -- o *big bang*. Todavia, numa noite de Novembro desse ano, logo a seguir ao nascimento da minha filha Lucy, comecei a pensar em buracos negros quando estava a meter-me na cama. O meu problema físico torna este processo bastante demorado, pelo que tive bastante tempo. Nessa altura, não existia qualquer delimitação precisa dos pontos do espaço-tempo que ficavam dentro ou fora do buraco negro (1).

(1) O problema era mais intrincado com os buracos negros com rotação. Podemos imaginar que, neste caso, o espaço roda à medida que flui para o interior do buraco negro. Há uma região em que o espaço flui com velocidade superior à velocidade da luz, embora a componente centrípeta desta velocidade geométrica seja inferior à velocidade da luz (*N. do R.*).

Já tinha discutido com Roger Penrose a ideia de definir um buraco negro como o conjunto de acontecimentos dos quais não era possível escapar para o infinito, que é a definição agora geralmente aceite. Isto significa que a fronteira do buraco negro, o horizonte de acontecimentos, é formada pelas trajectórias no espaço-tempo de raios de luz que não escapam ao buraco negro, ficando para sempre na fronteira (Fig. 7.1) (2). É um pouco parecido com fugir da polícia e conseguir ir sempre um passo à frente sem nunca fugir completamente!

(2) Este efeito de dragagem da luz pode ser entendido como se o espaço fluísse para o interior do buraco negro arrastando consigo a luz. No horizonte, a luz está a ser arrastada precisamente à velocidade da luz (*N. do R.*).

fig. 7.1

De repente, compreendi que as trajectórias desses raios de luz (3) nunca podiam aproximar-se umas das outras.

(3) Estas trajectórias a que Hawking se refere amiúde dizem respeito ao espaço-tempo, não devem ser entendidas como trajectórias no espaço (*N. do R.*).

Se isso acontecesse, encontrar-se-iam eventualmente, o que :, seria como encontrar alguém a correr, fugindo da policia no sentido contrário. Seriam ambos apanhados! (Ou, neste caso, cairiam num buraco negro). Mas se os raios de luz fossem engolidos pelo buraco negro, então não podiam ter estado na sua fronteira. Assim, as trajectórias dos raios luminosos no horizonte de acontecimentos tinham de ser paralelas ou divergentes. Outra maneira de ver a questão é imaginar o horizonte de acontecimentos, a fronteira do buraco negro, como o limiar de uma sombra: a sombra da desgraça iminente. Quando olhamos para a sombra projectada por um corpo, iluminado por uma fonte situada a grande distância, como o Sol, vemos que os raios de luz da orla não se aproximam uns dos outros.

Se os raios de luz que formam o horizonte de acontecimentos, a fronteira do buraco negro, nunca convergem, a área do horizonte de acontecimentos pode manter-se a mesma ou aumentar com o tempo, mas nunca diminuir -- porque isso significaria que pelo menos alguns dos raios de luz do limiar teriam de estar a aproximar-se uns dos outros. De facto, a área aumentaria sempre que matéria ou radiação fossem absorvidas pelo buraco negro (Fig. 7.2).

Ou, se dois buracos negros colidissem e se unissem para formar um só, a área do horizonte de acontecimentos do buraco negro final seria maior ou igual à soma das áreas dos horizontes de acontecimentos dos buracos negros iniciais (Fig. 7.3). Esta propriedade da área não se reduzir impôs uma restrição importante ao comportamento possível dos buracos negros. Fiquei tão excitado com a minha descoberta que quase não dormi nessa noite. No dia seguinte, telefonei a Roger Penrose e ele concordou comigo. Acho que, na realidade, ele já tinha a noção desta propriedade da área. No entanto, tinha estado a utilizar uma definição ligeiramente diferente de buraco negro. Não tinha compreendido que a fronteira do buraco negro, segundo as duas definições, seria a mesma e, portanto, :, também as suas áreas, desde que o buraco negro estivesse num estado estacionário.

figs. 7.2 e 7.3

Este comportamento de um buraco negro era muito reminiscente do comportamento da quantidade física chamada entropia, que mede o grau de desordem de um sistema. É um dado da experiência comum que a desordem tem tendência a aumentar, se as coisas forem deixadas entregues a si próprias. (Basta deixarmos de arranjar o que se estraga nas nossas casas para vermos que isto é verdade!) Podemos criar ordem a partir da desordem (por exemplo, podemos pintar a casa), mas isso requer dispêndio de esforço e, portanto, diminui a quantidade de energia ordenada disponível. :,

Uma asserção precisa desta ideia é conhecida por segunda lei da termodinâmica. Afirma que a entropia de um sistema isolado aumenta sempre e que, quando dois sistemas se unem, a entropia do sistema resultante é maior do que a soma das entropias dos sistemas individuais. Por exemplo, consideremos um sistema de moléculas de gás dentro de uma caixa. Podemos pensar nas moléculas como se fossem pequenas bolas de bilhar colidindo continuamente umas com as outras e ricocheteando nas paredes da caixa. Quanto mais alta for a temperatura do gás, mais depressa as moléculas se movem e, portanto, mais frequentemente e com mais força colidem com as paredes da caixa e maior é a pressão que exercem nestas. Suponhamos que inicialmente as moléculas estão todas confinadas no lado esquerdo da caixa por uma divisória. Se a divisória for retirada, as moléculas terão tendência para se espalharem e ocuparem ambas as metades da caixa. Em qualquer momento posterior, podiam estar, por acaso, todas na metade direita ou de novo na metade esquerda, mas é muitíssimo mais provável haver mais ou menos o mesmo número em ambas as metades. Tal estado é menos ordenado, ou mais desordenado, do que o estado original em que todas as moléculas estavam numa das metades. Diz-se, portanto, que a entropia do gás aumentou. Do mesmo modo, suponhamos que se começa com duas caixas, uma contendo moléculas de oxigénio e a outra contendo moléculas de azoto. Se se unirem as duas caixas, removendo a parede do meio, as moléculas de oxigénio e de azoto começarão a misturar-se. Mais tarde, o estado mais provável será o de uma mistura razoavelmente uniforme de moléculas de oxigénio e de azoto pelas duas caixas. Este estado será menos ordenado e terá maior entropia do que o estado inicial das duas caixas separadas.

A segunda lei da termodinâmica tem um estatuto bastante diferente do das outras leis físicas, tais como a lei :, da gravitação de newton, por exemplo, porque nem sempre se verifica, mas sim na grande maioria dos casos (4).