оЫ = оЬ2 + 10;
Но, к сожалению, он не позволяет выполнять операции, аналогичные следующей.
оЫ = 10 + оЬ2;
Дело в том, что второй целочисленный аргумент данного метода обозначает правый операнд бинарного оператора +, но в приведенной выше строке кода целочисленный аргумент указывается слева. Для того чтобы разрешить выполнение такой операции сложения, придется перегрузить оператор + еще раз. В этом случае первый параметр операторного метода должен иметь тип int, а второй параметр — тип ThreeD. Таким образом, в одном варианте метода operator+ () выполняется сложение объекта типа ThreeD и целого значения, а во втором — сложение целого значения и объекта типа ThreeD. Благодаря такой перегрузке оператора + (или любого другого бинарного оператора) допускается появление встроенного типа данных как с левой, так и с правой стороны данного оператора. Ниже приведен еще один вариант класса ThreeD, в котором бинарный оператор + перегружается описанным выше образом.
// Перегрузить бинарный оператор + трижды:
// один -раз — для сложения объектов класса ThreeD,
// второй раз — для сложения объекта типа ThreeD и целого значения типа int,
// а третий раз — для сложения целого значения типа int и объекта типа ThreeD.
using System;
// Класс для хранения трехмерных координат, class ThreeD {
int х, у, z; // трехмерные координаты public ThreeD() { х = у = z = 0; }
public ThreeD(int i, int j, int k) { x = i; у = j; z = k; }
// Перегрузить бинарный оператор + для сложения объектов класса ThreeD. public static ThreeD operator +(ThreeD opl, ThreeD op2)
{
ThreeD result = new ThreeD();
/* Сложить координаты двух точек и возвратить результат. */ result, х ='"opl.x + ор2.х; result.у = opl.y + ор2.у; result.z = opl.z + op2.z;
return result;
}
// Перегрузить бинарный оператор + для сложения // объекта типа ThreeD и целого значения типа int. public static ThreeD operator +(ThreeD opl, int op2)
{
ThreeD result = new ThreeD();
result.x = opl.x + op2; result.у = opl.y + op2; result.z = opl.z + op2;
return result;
}
// Перегрузить бинарный оператор + для сложения // целого значения типа int и объекта типа ThreeD. public static ThreeD operator +(int opl, ThreeD op2)
{
ThreeD result = new ThreeD();
result.x = op2.x + opl; result.у = op2.y + opl; result.z = op2.z + opl;
return result;
}
// Вывести координаты X, Y, Z. public void Show()
{
Console.WriteLine(x + ", " + у + ", " + z);
}
}
class ThreeDDemo { static void Main() {
ThreeD a = new ThreeD(1, 2, 3) ;
ThreeD b = new ThreeD(10, 10, 10); ThreeD с = new ThreeD();
Console.Write("Координаты точки a: ");
a.Show() ;
Console.WriteLine ();
Console.Write("Координаты точки b: ");
b.Show();
Console.WriteLine();
с = a + b; // сложить объекты класса ThreeD Console.Write("Результат сложения a + b: ");
c.Show();
Console.WriteLine ();
c=b+10; // сложить объект типа ThreeD и целое значение типа int Console.Write("Результат сложения b + 10: ");
с.Show();
Console.WriteLine() ;
c=15+b; // сложить целое значение типа int и объект типа ThreeD Console.Write("Результат сложения 15 + b: ");
с.Show();
}
}
Выполнение этого кода дает следующий результат.
Координаты точки а: 1, 2, 3
Координаты точки b: 10, 10, 10 Результат сложения а + Ь: 11, 12, 13 Результат сложения b + 10: 20, 20, 20 Результат сложения 15 + Ь: 25, 25, 25
Перегрузка операторов отношения
Операторы отношения, например == и <, могут также перегружаться, причем очень просто. Как правило, перегруженный оператор отношения возвращает логическое значение true и false. Это вполне соответствует правилам обычного применения подобных операторов и дает возможность использовать их перегружаемые разновидности в условных выражениях. Если же возвращается результат другого типа, то тем самым сильно ограничивается применимость операторов отношения.
Ниже приведен очередной вариант класса ThreeD, в котором перегружаются операторы < и >. В данном примере эти операторы служат для сравнения объектов ThreeD, исходя из их расстояния до начала координат. Один объект считается больше другого, если он находится дальше от начала координат. А кроме того, один объект считается меньше другого, если он находится ближе к началу координат. Такой вариант реализации позволяет, в частности, определить, какая из двух заданных точек находится на большей сфере. Если же ни один из операторов не возвращает логическое значение true, то обе точки находятся на одной и той же сфере. Разумеется, возможны и другие алгоритмы упорядочения.