Рассмотрим следующий фрагмент программы:
// в каком-то заголовочном файле
extern void print( const Account &acct );
// ...
int main()
{
// преобразует строку "oops" в объект класса Account
// с помощью конструктора Account::Account( "oops", 0.0 )
print( "oops" );
// ...
}
По умолчанию конструктор с одним параметром (или с несколькими - при условии, что все параметры, кроме первого, имеют значения по умолчанию) играет роль оператора преобразования. В этом фрагменте программы конструктор Account неявно применяется компилятором для трансформации литеральной строки в объект класса Account при вызове print(), хотя в данной ситуации такое преобразование не нужно.
Непреднамеренные неявные преобразования классов, например трансформация "oops" в объект класса Account, оказались источником трудно обнаруживаемых ошибок. Поэтому в стандарт C++ было добавлено ключевое слово explicit, говорящее компилятору, что такие преобразования не нужны:
class Account {
public:
explicit Account( const char*, double=0.0 );
};
Данный модификатор применим только к конструктору. (Операторы преобразования и слово explicit обсуждаются в разделе 15.9.2.)
14.2.1. Конструктор по умолчанию
Конструктором по умолчанию называется конструктор, который можно вызывать, не задавая аргументов. Это не значит, что такой конструктор не может принимать аргументов; просто с каждым его формальным параметром ассоциировано значение по умолчанию:
// все это конструкторы по умолчанию
Account::Account() { ... }
iStack::iStack( int size = 0 ) { ... }
Complex::Complex(double re=0.0, double im=0.0) { ... }
Когда мы пишем:
int main()
{
Account acct;
// ...
}
* то компилятор сначала проверяет, определен ли для класса Account конструктор по умолчанию. Возникает одна из следующих ситуаций: Такой конструктор определен. Тогда он применяется к acct.
* Конструктор определен, но не является открытым. В данном случае определение acct помечается компилятором как ошибка: у функции main() нет прав доступа.
* Конструктор по умолчанию не определен, но есть один или несколько конструкторов, требующих задания аргументов. Определение acct помечается как ошибка: слишком мало аргументов у конструктора.
* Нет ни конструктора по умолчанию, ни какого-либо другого. Определение считается корректным, acct не инициализируется, конструктор не вызывается.
Пункты 1 и 3 должны быть уже достаточно понятны (если это не так, перечитайте данную главу) Посмотрим более внимательно на пункты 2 и 4.
Допустим, что все члены класса Account объявлены открытыми и не объявлено никакого конструктора:
class Account {
public:
char *_name;
unsigned int _acct_nmbr;
double _balance;
};
В таком случае при определении объекта класса Account специальной инициализации не производится. Начальные значения всех трех членов зависят только от контекста, в котором встретилось определение. Например, для статических объектов гарантируется, что все их члены будут обнулены (как и для объектов, не являющихся экземплярами классов):
// статический класс хранения
// вся ассоциированная с объектом память обнуляется
Account global_scope_acct;
static Account file_scope_acct;
Account foo()
{
static Account local_static_acct;
// ...
}
Однако объекты, определенные локально или распределенные динамически, в начальный момент будут содержать случайный набор битов, оставшихся в стеке программы:
// локальные и распределенные из хипа объекты не инициализированы
// до момента явной инициализации или присваивания
Account bar()
{
Account local_acct;
Account *heap_acct = new Account;
// ...
}
Новички часто полагают, что компилятор автоматически генерирует конструктор, если он не задан, и применяет его для инициализации членов класса. Для Account в том виде, в каком мы его определили, это неверно. Никакой конструктор не генерируется и не вызывается. Для более сложных классов, имеющих члены, которые сами являются классами, или использующих наследование, это отчасти справедливо: конструктор по умолчанию может быть сгенерирован, но и он не присваивает начальных значений членам встроенных или составных типов, таким, как указатели или массивы.