На каждом уровне абстракции имеются данные и операции, необходимые для поддержки все более и более широкого круга пользователей. Например, абстрактный класс ZooAnimal хранит информацию, общую для всех животных в зоопарке, и предоставляет открытый интерфейс для всех возможных запросов.
Помимо классов, описывающих животных, есть и вспомогательные классы, инкапсулирующие различные абстракции иного рода, например "животные, находящиеся под угрозой вымирания". Наша реализация класса Panda множественно наследует от Bear (медведь) и Endangered (вымирающие).
18.2. Множественное наследование
Для поддержки множественного наследования синтаксис списка базовых классов
class Bear : public ZooAnimal { ... };
расширяется: допускается наличие нескольких базовых классов, разделенных запятыми:
class Panda : public Bear, public Endangered { ... };
Для каждого из перечисленных базовых классов должен быть указан уровень доступа: public, protected или private. Как и при одиночном наследовании, множественно наследовать можно только классу, определение которого уже встречалось ранее.
Язык не накладывает никаких ограничений на число базовых классов, которым может наследовать производный. На практике чаще всего встречается два класса, один из которых представляет открытый абстрактный интерфейс, а второй – закрытую реализацию (хотя ни один из рассмотренных выше примеров этой модели не следует). Производные классы, наследующие от трех или более базовых, – это пример такого стиля проектирования, когда каждый базовый класс представляет одну грань полного интерфейса производного.
В случае множественного наследования объект производного класса содержит по одному подобъекту каждого из своих базовых (см. раздел 17.3). Например, когда мы пишем
Panda ying_yang;
то объект ying_yang будет состоять из подобъекта класса Bear (который в свою очередь содержит подобъект ZooAnimal), подобъекта Endangered и нестатических членов, объявленных в самом классе Panda, если таковые есть (см. рис. 18.3).
Рис. 18.3. Иерархия множественного наследования класса Panda
Конструкторы базовых классов вызываются в порядке объявления в списке базовых классов. Например, для ying_yang эта последовательность такова: конструктор Bear (но поскольку класс Bear – производный от ZooAnimal, то сначала вызывается конструктор ZooAnimal), затем конструктор Endangered и в самом конце конструктор Panda.
Как отмечалось в разделе 17.4, на порядок вызова не влияет ни наличие базовых классов в списке инициализации членов, ни порядок их перечисления. Иными словами, если бы конструктор Bear вызывался неявно и потому не был бы упомянут в списке инициализации членов, как в следующем примере:
// конструктор по умолчанию класса Bear вызывается до
// конструктора класса Endangered с двумя аргументами ...
Panda::Panda()
: Endangered( Endangered::environment,
Endangered::critical )
{ ... }
то все равно конструктор по умолчанию Bear был бы вызван раньше, чем явно заданный в списке конструктор класса Endangered с двумя аргументами.
Порядок вызова деструкторов всегда противоположен порядку вызова конструкторов. В нашем примере деструкторы вызываются в такой последовательности: ~Panda(), ~Endangered(), ~Bear(), ~ZooAnimal().
В разделе 17.3 уже говорилось, что в случае одиночного наследования к открытым и защищенным членам базового класса можно обращаться напрямую (не квалифицируя имя члена именем его класса), как если бы они были членами производного класса. То же самое справедливо и для множественного наследования. Однако при этом можно унаследовать одноименные члены из двух или более базовых классов. В таком случае прямое обращение оказывается неоднозначным и приводит к ошибке компиляции.
Однако такую ошибку вызывает не потенциальная неоднозначность неквалифицированного доступа к одному из двух одноименных членов, а лишь попытка фактического обращения к нему (см. раздел 17.4). Например, если в обоих классах Bear и Endangered определена функция-член print(), то инструкция
ying_yang.print( cout );
приводит к ошибке компиляции, даже если у двух унаследованных функций-членов разные списки параметров.
Error: ying_yang.print( cout ) -- ambiguous, one of
Bear::print( ostream& )
Endangered::print( ostream&, int )