Выбрать главу

Оператор взятия индекса переопределен в классах Array_RC и Array_Sort, и обе реализации имеют равный приоритет. Поэтому внутри Array_RC_S неквалифицированное обращение к оператору взятия индекса неоднозначно. Класс Array_RC_S должен предоставить собственную реализацию, иначе пользователи не смогут напрямую применять такой оператор к объектам этого класса. Но какова семантика его вызова в Array_RC_S? При учете отсортированности массива он должен установить в true унаследованный член dirty_bit. А чтобы учесть наследование от класса с контролем выхода за границы массива – проверить указанный индекс. После этого можно возвращать элемент массива с данным индексом. Последние два шага выполняет унаследованный из Array_RC оператор взятия индекса. При обращении

return Array_RCType::operator[]( index );

он вызывается явно, и механизм виртуализации не применяется. Поскольку это встроенная функция, то при статическом вызове компилятор подставляет ее код в место вызова.

Теперь протестируем нашу реализацию с помощью функции try_array(), передавая ей по очереди классы, конкретизированные из шаблона Array_RC_S типами int и string:

#include "Array_RC_S.h"

#include "try_array.C"

#include string

int main()

{

static int ia[ 10 ] = { 12,7,14,9,128,17,6,3,27,5 };

static string sa[ 7 ] = {

"Eeyore", "Pooh", "Tigger",

"Piglet", "Owl", "Gopher", "Heffalump"

};

Array_RC_Sint iA( ia,10 );

Array_RC_Sstring SA( sa,7 );

cout "eiie?aoecaoey eeanna Array_RC_Sint"

endl;

try_array( iA );

cout "eiie?aoecaoey eeanna Array_RC_S"string"

endl;

try_array( SA );

return 0;

}

Вот что печатает программа для класса, конкретизированного типом string (теперь ошибка выхода за границы массива перехватывается):

конкретизация класса Array_Sortstring

try_array: начальные значения массива

( 7 ) Eeyore, Gopher, Heffalump, Owl, Piglet, Pooh

Tigger

try_array: после присваиваний

( 7 ) Eeyore, Gopher, Owl, Piglet, Pooh, Pooh

Pooh

try_array: почленная инициализация

( 7 ) Eeyore, Gopher, Owl, Piglet, Pooh, Pooh

Pooh

try_array: после почленного копирования

( 7 ) Eeyore, Piglet, Owl, Piglet, Pooh, Pooh

Pooh

try_array: после вызова grow

( 7 ) empty, empty, empty, empty, Eeyore, Owl

Piglet, Piglet, Pooh, Pooh, Pooh

искомое значение: Tigger возвращенный индекс: -1

Assertion failed: ix = 0 && ix & size

Представленная в этой главе реализация иерархии класса Array иллюстрирует применение множественного и виртуального наследования. Детально проектирование класса массива описано в [NACKMAN94]. Однако, как правило, достаточно класса vector из стандартной библиотеки.

Упражнение 18.16

Добавьте в Array функцию-член spy(). Она запоминает операции, примененные к объекту класса: число доступов по индексу; количество вызовов каждого члена; какой элемент искали с помощью find() и сколько было успешных поисков. Поясните свои проектные решения. Модифицируйте все подтипы Array так, чтобы spy() можно было использовать и для них тоже.

Упражнение 18.17

Стандартный библиотечный класс map (отображение) называют еще ассоциативным массивом, поскольку он поддерживает индексирование значением ключа. Как вы думаете, является ли ассоциативный массив кандидатом на роль подтипа нашего класса Array? Почему?

Упражнение 18.18

Перепишите иерархию Array, пользуясь контейнерными классами из стандартной библиотеки и применяя обобщенные алгоритмы.

19. Применение наследования в C++

При использовании наследования указатель или ссылка на тип базового класса способен адресовать объект любого производного от него класса. Возможность манипулировать такими указателями или ссылками независимо от фактического типа адресуемого объекта называется полиморфизмом. В этой главе мы рассмотрим три функции языка, обеспечивающие специальную поддержку полиморфизма. Сначала мы познакомимся с идентификацией типов во время выполнения (RTTI – Run-time Type Identification), которая позволяет программе узнать истинный производный тип объекта, адресованного ссылкой или указателем на тип базового класса. Затем расскажем о влиянии наследования на обработку исключений: покажем, как можно определять их в виде иерархии классов и как обработчики для типа базового класса могут перехватывать исключения производных типов. В конце главы мы вернемся к правилам разрешения перегрузки функций и посмотрим, как наследование влияет на то, какие преобразования типов можно применять к аргументам функции, и на выбор наилучшей из устоявших.