Выбрать главу

      Правда, с некоторым запозданием, восторжествовала. Стало ясно: азот воздуха недоступен растениям, а вода из водопровода - опасна для здоровья. Аммиак, знаете ли, образуется при гниении органических веществ в отсутствии кислорода. И для современных санитарно-эпидемиологических станций даже ничтожные концентрации подобных соединения в ней – повод перекрыть кран.

       Ну, а Буссенго продолжал заниматься поисками «мостика», через который азот воздуха попадает в почву. «Быть может, в плодородном слое существует некий механизм, накопитель азота, - размышлял он, - или существуют растения, вопреки всем законам поглощающие сей элемент прямо из атмосферы». Тут-то он вспомнил о клевере. Еще древние индийцы знали о его способности помогать другим растениям (если не успели прочитать об этом, то вернитесь к главе «Тень Шамбалы»).

      И французский агрохимик ставит новый опыт. В чистый песок высаживаются четыре растения: клевер, горох, пшеница и овес. Через три месяца под клевером накапливается 42 миллиграмма азота, под горохом 55 миллиграмм. Пшеница же не дала ничего, а овес «умудрился» воспользоваться даже теми крохами, которые не удалось вытравить из «почвы» ни кислотами, ни огнем.

      Значит, все-таки существуют растения, «поедающие» азот воздуха?!

 Но как они это делают? Четверть века Буссенго пытался получить ответ. Но тайна так и осталась нераскрытой. 

      Примерно, в те же годы на одной из опытных станций Пруссии немецкий агрохимик Гельригель проводил самые незатейливые эксперименты, которые знает наука. Его интересовало, сколько надо внести в почву азота, фосфора и калия, чтобы получить хороший урожай.

      Он высаживал семена в прокаленную землю и песок. Подмешивал в нее то те, то другие  соли, увлажнял почву самыми разнообразными растворами и наблюдал. Наблюдал не день, ни два, а более тридцати лет. И постоянно замечал одну и ту же картину. Стоило овсу или пшенице не додать азотистых солей, они становились хилыми и чахлыми. Когда же их место занимал горох, начиналось что-то невообразимое, непредсказуемое. Иногда, получались великолепные урожаи, а чаще хуже, чем у овса. Капризное растение. Но и Гельригел оказался упрям. Он забрасывает опыты со злаками. И начинает наблюдать за горохом, фасолью и другими бобовыми.

      Вскоре, ученый заметил: бобовые не реагируют на селитру. Случалось, при хорошей дозе азотных удобрений урожай растения просто гибли, а бывало и наоборот. Гельригель перебирает все возможные комбинации. Тщетно. Ни одно объяснение не подходило. И тут … «Эврика»! МИКРОБЫ!

ОХОТА ЗА НЕВИДИМКАМИ.

 Трофеи Бертло. Ловушка для азота. Провинциалы из Гренобля.  Неловкость Мюнца. Испорченный эксперимент. Жаром и хлороформом. «Диковинный зверь».  Творец чилийской селитры.

       О них знали давно. Еще в 17 веке старый ворчун Левенгук  наблюдал через увеличительные стекла, как живут и размножаются в дождевой воде забавные, микроскопические существа. Но никто до Пастера, то есть до середины 19 столетия, не принимал «малюток» всерьез.

       Никому и в голову не приходило, что микробы могут убить человека, превратить молоко в простоквашу, а виноградный сок в вино. Когда же об этом стало известно, на них развернулась настоящая охота. Медики искали их в больницах, частных домах, воде, воздухе, в желудках животных.

        Французский же химик Пьер Эжен Бертло нашел бактерии в почве. В его  открытии не было ничего удивительного, если бы не способности, которыми обладали организмы. А они умели извлекать азот из воздуха. Поселив их в чистом кварцевом песке, Бертло обнаружил: в бесплодном грунте появились соли азота.

        «Очевидно, коллега открыл те самые микробы, что помогают  гороху и другим бобовым заимствовать этот элемент из атмосферы», - решил Гельригель. Предположение нуждалось в проверке. И немецкий агрохимик ставит новые опыты. Уже в который раз горшки наполняются песком и  «заражаются» землей с гороховых грядок.

       В почву высевают семена пшеницы, овса, гороха. Прошел месяц, другой. Догадка подтверждена. Пшеница и овес уродились худосочными, а горох чувствовал себя прекрасно. Выходило, бобовые обладают каким-то особым механизмом, усиливающим действие микробов во много раз. А у пшеницы и других злаков ничего подобного нет.

       И тут на глаза ученому попадается журнал «Берлинский ботанический вестник». Перелистывая страницы, Гельригель неожиданно находит сообщение русского исследователя Михаила Семеновича Воронина о… горохе. «На корнях бобовых растений есть желвачки, - писал ботаник. – Они содержат в себе великое множество микробов». И все…

       Воронин даже не попытался объяснить: зачем эти наросты, растениям.  Почему в них скапливается такое множество микроорганизмов?

        Выводы за него пришлось делать прусскому агрохимику. Оказалось в желвачках скрыта вся сила бобовых культур. Они – ловушки, в которые попадает азот воздуха. Но, что происходит дальше, выяснить ему так и не удалось.

        Со времен Лавуазье многие понимали: селитра – главная азотистая пища растений. Буссенго раскрыл ее состав. Показал: она рождается при окислении органических веществ и аммиака. Тут-то цепочка и обрывалась. Дальше… неведомое. По другую сторону, которого призрачно маячили исследования Гельригеля, утверждавшего: азот воздуха захватывается бактериями. Долгое время никому не удавалось перекинуть мостик между их открытиями. Создать теорию круговорота азота в природе.

       Попадались ученые, полагавшие, будто дело вовсе не в микробах, а в простых химических превращениях. Мол, аммиак, попадая в почву вместе с дождями и удобрениями, соединяется с кислородом и разлагается на простые соли. И приводили в подтверждение своей догадки пример «селитряного инея», часто появлявшегося на стенках погребов и конюшен. Хотя Пастер и пытался убедить всех: медленное окисление не обходится без микроорганизмов.

      Увы, логика порой не способна противостоять слепой вере. А потому уверения великого микробиолога  не принимались в серьез. Лишь пятнадцать лет спустя, случайность помогла признать могущество царства невидимок.

       В 1878 году из Гренобля в Париж по приглашению члена Парижской академии Пьера Дегерена прибыли два никому неизвестных химика Шлезинг и Мюнц.

       «Не возьметесь ли, господа, - обратился он к ним, - избавить наш город от зловоний? Найдите, хотя бы способ очистки сточных вод».

        Оба ученых неплохо разбирались в геологии. И потому решили: самый надежный фильтр для стоков – земля. Ведь влага родников всегда чиста и свежа. Они заказали несколько двухметровых труб. И когда те доставили в лабораторию, заполнили их почвой с полуострова Женвилье, где располагались столичные поля орошения.

        Почему двухметровых, и зачем такая грязная начинка? Во-первых, экспериментаторы не без основания считали: на такой глубине в природе  вскрываются незамутненные водные жилы. Во-вторых, - для очистки они выбрали землю, «привычную» к клоачным стокам, где, по их расчетам, должны содержаться все ингредиенты для очистки воды.

       Расчеты оказались верны.  Темная и густая жидкость медленно просачивалась сквозь почвенную толщу. Все твердые частицы осаждались в ней. А из труб вытекала прозрачная влага без цвета и запаха, что нельзя было сказать о той, что заливали сверху.

       Цель достигнута, но ученые не успокоились. «Хорошо ли система справляется с очисткой?» - задумались Шлезинг и Мюнц. Химические анализы стоков показали: в них полно аммиачных солей – результат брожения останков растений и животных. В отфильтрованной же воде они исчезли, зато появлялась азотная кислота! Нетрудно сообразить, пока влага просачивалась сквозь землю, аммиак окислялся. Его слагающие, азот и водород, присоединив кислород, создавали два самостоятельных вещества кислоту и чистую воду.

        Ничего нового. И возможно, на этом  все опыты и закончились бы. Но в один из дней Мюнц проявил неловкость. Опрокинул на кучу испытуемой земли склянку с хлороформом. По лаборатории стал разливаться дурманящий, сладковатый запах. Пришлось открыть окна и спасться бегством. Ведь действие этого препарата мало чем отличается от боевых отравляющих газов.