Выбрать главу

Una estrella como el Sol finalizará sus días como una gigante roja y luego como una enana blanca, tal como hemos visto. Una estrella en proceso de colapso con masa doble a la del Sol se convertirá en una supemova y luego en una estrella de neutrones. Pero una estrella de masa superior, que después de pasar por la fase de supemova quede con la masa, por ejemplo de cinco soles, tiene ante sí un destino todavía más notable: su gravedad la convertirá en un agujero negro. Supongamos que dispusiéramos de una máquina mágica de gravedad. un aparato que nos pennitiera controlar la gravedad de la Tierra, girando por ejemplo

una aguja. Al principio la aguja está en 1 g9 y todo se comporta como estamos acostumbrados a ver. Los animales y las plantas de la Tierra y las estructuras de nuestros edificios han evolucionado o se han diseñado para 1 g. Si la gravedad fuera mucho menor podría haber formas altas y delgadas que no caerían ni quedarían aplastadas por su propio peso. Si la gravedad fuese muy superior, las plantas, los animales y la arquitectura tendrían que ser bajos y rechonchos para no sufrir el colapso gravitatorio. Pero incluso en un campo de gravedad de bastante intensidad la luz se desplazaría en línea recta, como hace desde luego en la vida corriente.

Consideremos (véase ilustración de la página 236) un posible grupo típico de seres terrestres. Cuando disminuimos la gravedad, las cosas pesan menos. Cerca de 0 g el movimiento más ligero proyecta a nuestros amigos por los aires flotando y dando tumbos. El té vertido fuera de la taza, o cualquier otro líquido, forma glóbulos esféricos palpitantes en el aire: la tensión superficial del líquido supera a la gravedad. Hay por todas partes bolas de té. Si marcamos de nuevo en el aparato 1 g provocamos una lluvia de té. Cuando aumentamos algo la gravedad, de 1 g a 3 o 4 g, por ejemplo, todos quedan inmovilizados: se requiere un esfuerzo enorme incluso para mover una pierna. Sacamos por compasión a nuestros amigos del dominio de la máquina de la gravedad antes de poner la aguja en gravedades más altas todavía. El haz de luz de una ¡interna sigue una línea perfectamente recta (según la precisión de nuestras observaciones) cuando la gravedad es de unos cuantos g, al igual que a 0 g. A 1 000 g el haz es todavía recto, pero los árboles han quedado aplastados y aplanados; a 100 000 g las rocas se aplastan por su propio peso. Al final no queda ningún superviviente excepto el gato de Cheshire, por una dispensa especial. Cuando la gravedad se acerca a mil millones de g sucede algo todavía más extraño. El haz de luz que hasta ahora subía directo hacia el cielo empieza a curvarse. Incluso la luz queda afectada por intensas aceleraciones gravitatorias. Si aumentamos todavía más la gravedad, la luz no puede levantarse y cae al suelo cerca de nosotros. Ahora el gato cósmico de Cheshire ha desaparecido, sólo queda su sonrisa gravitatoria.

Cuando la gravedad es lo bastante elevada no deja escapar nada, ni siquiera la luz. Un lugar así recibe el nombre de agujero negro. Es una especie de gato cósmico de Cheshire enigmaticamente indiferente a lo que le rodea. Cuando la densidad y la gravedad alcanzan un valor suficientemente elevado el agujero negro parpadea y desaparece de nuestro universo. Por esto se 'llama agujero negro: no puede escapar luz alguna de él. Es posible que en su interior, con tanta luz atrapada, las cosas presenten una atractiva iluminación. Aunque un agujero negro sea invisible desde el exterior, su presencia gravitatoria puede ser palpable. Si no vamos con cuidado, en un viaje interestelar podemos ser arrastrados de modo irrevocable y nuestros cuerpos quedar estirados desagradablemente formando un hilo largo y delgado. Pero la materia que se iría concentrando en forma de disco alrededor del agujero negro nos ofrecería un espectáculo digno de recordar, en el caso improbable de que sobreviviéramos a la excursión.

Las reacciones termonucleares en el interior solar sostienen las capas exteriores del Sol y aplazan durante miles de millones de años un colapso gravitatorio catastrófico. En el caso de las enanas blancas la presión de los electrones arrancados de sus núcleos sostiene la estrella. En el caso de las estrellas de neutrones la presión de los neutrones compensa la gravedad. Pero en el caso de una estrella anciana que ha sobrevivido a las explosiones de supernova y a otras impetuosidades y cuya masa es varias veces superior a la del Sol, no hay fuerzas conocidas que puedan impedir el colapso. La estrella se encoge increíblemente, gira, enrojece y desaparece. Una estrella con una masa veinte veces superior a la del Sol se encogerá hasta tener el tamaño del Gran Los Ángeles; la aplastante gravedad llega a ser de 1 010 g, y la estrella se desliza por una fisura que ella misma ha creado en el continuo del espacio tiempo y desaparece de nuestro universo.

Los agujeros negros fueron imaginados por primera vez por el astrónomo inglés John Michell en 1783. Pero la idea parecía tan extravagante que se ignoró de modo general hasta hace muy poco, cuando ante el asombro de muchos, incluyendo a muchos astrónomos, se descubrieron pruebas concretas de la existencia de agujeros negros en el espacio. La atmósfera de la Tierra es opaca a los rayos X. Para poder determinar si los objetos astronómicos emiten luz de una longitud de onda tan corta hay que transportar el telescopio de rayos X sobre la atmósfera. El primer observatorio de rayos X fue un admirable esfuerzo internacional, orbitado por los Estados Unidos a partir de una plataforma italiana de lanzamiento en el océano índico, ante la costa de Kenya, y bautizado con el nombre de Uhuru, palabra swahili que significa libertad. En 1971 Uhuru descubrió una fuente notable de rayos X en la constelación del Cisne, que se apagaba y se encendía miles de veces por segundo. La fuente, llamada Cygnus X 1 tiene que ser por lo tanto muy pequeña. Sea cual fuere la razón del parpadeo, la información necesaria para encender y apagar la fuente no puede cruzar Cyg X 1 a velocidad superior a la de la luz, 300 000 km./seg. Por lo tanto Cyg X 1 no puede ser mayor que [300 000 km./seg] x [(I/I OOO)seg] = 300 kilómetros de diámetro. Un objeto del tamaño de un asteroide es una fuente brillante y parpadeante de rayos X visible a distancias interestelares. ¿Qué objeto podría ser éste? Cyg X 1 está en el mismo punto preciso del espacio que una estrella supergigante azul y caliente, que en luz visible demuestra poseer una compañera cercana pero invisible, de gran masa, que la atrae gravitatoriamente primero en una dirección y luego en otra. La masa de la compañera es unas diez veces la del Sol. La supergigante es una fuente improbable de rayos X, y resulta tentador identificar a la compañera deducida gracias a la luz visible como la fuente detectada de rayos X. Pero un objeto invisible que pese diez veces más que el Sol y cuyo volumen se haya reducido por colapso al de un asteroide sólo puede ser un agujero negro. Es probable que los rayos X se generen por fricción en el disco de gas y de polvo acumulado por acreción alrededor de Cyg X 1 y procedente de su compañera supergigante. Otras estrellas llamadas V861 Scorpii, GX 339 4, SS433 y Circinus X 2 son también candidatas para agujeros negros. Cassiopeia A es el resto de una supemova cuya luz tuvo que haber llegado a la Tierra en el siglo diecisiete, cuando había aquí un número considerable de astrónomos. Sin embargo, nadie infonnó de la explosión. Quizás, como sugiere I. S. Shklovskii, hay allí oculto un agujero negro que se comió el núcleo estelar en explosión y amortiguó los fuegos de la supemova. Los telescopios en el espacio son los medios idóneos para comprobar todos estos cabos y fragmentos de datos que pueden ser la pista, el rastro del legendario agujero negro.